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We study permutations p such that both p and p2 avoid a given pat-
tern q.

1. INTRODUCTION

The vast and prolific area of permutation patterns considers permutations as linear orders. In
this concept, a permutation p is a linear array p1p2 · · · pn of the first n positive integers in
some order, so that each integer occurs exactly once. We say that a permutation p contains the
pattern q = q1q2 · · · qk if there is a k-element set of indices i1 < i2 < · · · < ik so that pir < pis
if and only if qr < qs. If p does not contain q, then we say that p avoids q. A recent survey on
permutation patterns can be found in [8] and a book on the subject is [4].

This definition does not consider the other perspective from which permutations can be
studied, namely that of the symmetric group, where the product of two permutations is de-
fined, and the notion of a permutation’s inverse is defined. Therefore, it is not surprising that
pattern avoidance questions become much more difficult if the symmetric group concept is
present in them. (See [1], [2] or [5] for a few results in this direction.) One exception to this is
the straightforward observation [3] that if p avoids q, then its inverse permutation p−1 avoids
q−1.

Trying to extend that simple observation at least a little bit, in this paper we study the
following family of questions. Let us call a permutation p strongly q-avoiding if both p and
p2 avoid q. Let Savn(q) denote the number of strongly q-avoiding permutations of length n.
What can be said about the numbers Savn(q)?
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We will first prove that if q is a monotone increasing pattern of any length, then Savn(q) =
0 will hold for n sufficiently large. This is only true for monotone increasing patterns. We
will then provide an explicit formula for the generating function for the sequence of numbers
Savn(312) = Savn(231), and prove a lower bound for the sequence Savn(321). We end the
paper with intriguing questions about the (identical) sequences Savn(132) = Savn(213).

2. THE PATTERN 12 · · · k

In this section, we prove that for all k, if p is long enough, then either p or p2 must contain an
increasing subsequence of length k.

Theorem 2.1. Let k be a positive integer, and let n ≥ (k − 1)3 + 1. Then Savn(12 · · · k) = 0.

Proof. Let p be a permutation of length n ≥ (k − 1)3 + 1 that avoids the pattern 12 · · · k.
Then p is the union of k − 1 decreasing subsequences. Color these subsequences with colors
1, 2, . . . , k − 1 so that a maximum-length subsequence gets the color 1. Then there are at least
(k − 1)2 + 1 entries of color 1. Let us say that these entries are in positions i1 < i2 < · · · < im,
and they are p(i1) > p(i2) > · · · > p(im). In order to simplify notation, let Pj = p(ij).

Now consider the m ≥ (k − 1)2 + 1 positions Pm < Pm−1 < · · · < P1 in p. By the Pigeon-
hole principle, there will be a set S of at least k positions among them so that entries in these
positions are of the same color, that is, that form a decreasing subsequence S. Then we claim
that those same k entries form an increasing sequence in p2. Indeed, let positions Pa and Pb

contain two entries of S, with a < b, so Pa > Pb. That means that position p(ia) contains a
smaller entry than position p(ib), that is, p(p(ia)) < p(p(ib)). This argument can be repeated
for every pair of entries in positions that belong to S, proving that in p2, the k entries that are
in positions in S form an increasing subsequence.

The bound on the length of n relative to k for a strongly 12 · · · k-avoiding permutation
given above is tight for at least small values of k. This is trivially true for k = 1, 2. More-
over, one example of a strongly 12 · · · k-avoiding permutation of length (k − 1)3 for k = 3 is
p = 75863142 = (1746)(2538) whose square is p2 = 43218765. A similar approach yields a
maximum length strongly 12 · · · k-avoiding permutation of length (k − 1)3 for k = 4:

p = 24 21 26 19 23 27 20 25 22 15 12 17 10 14 18 11 16 13 6 3 8 1 5 9 2 7 4

p2 = 9 8 7 6 5 4 3 2 1 18 17 16 15 14 13 12 11 10 27 26 25 24 23 22 21 20 19

Somewhat similarly constructed strongly 12 · · · k-avoiding permutations of length (k−1)3
also exist for k = 5, 6.

For k = 5, each of the four intervals of consecutive entries is of the form:

9 5 11 7 15 3 13 1 16 4 14 2 10 6 12 8 = (1 9 16 8)(2 5 15 12)(3 11 14 6)(4 7 13 10).

From left to right, each interval is made up of the largest remaining 16 entries.

2



For k = 6, the five intervals are of the form:

14 9 18 7 16 11 22 3 24 5 20 1 13 25 6 21 2 23 4 15 10 19 8 17 12.

That is, (1 14 25 12)(2 9 24 17)(3 18 23 8)(4 7 22 19)(5 16 21 10)(6 11 20 15). From left to right,
each interval is made up of the largest remaining 25 entries.

As before, in these constructions, p2 is made up of k − 1 intervals of decreasing entries
where from left to right, each interval is made up of the smallest remaining (k − 1)2 entries.

There are also nice graphical symmetries within the intervals in these small examples. As
such, there is reason to believe it could be possible to generalize these constructions to show
the bound given in Theorem 2.1 is always the best.

Note that no other patterns q have the property that Savn(q) = 0 if q is large enough. In-
deed, the identity permutation strongly avoids all patterns that are not monotone increasing.

3. THE PATTERN 312

In a 312-avoiding permutation, all entries on the left of the entry 1 must be smaller than all
entries on the right of 1, or a 312-pattern would be formed with the entry 1 in the middle.
Therefore, if p = p1p2 · · · pn is a 312-avoiding permutation, and pi = 1, then p maps the
interval [1, i] into itself, and the interval [i+1, n] into itself. That means that p will be strongly
312-avoiding if and only if its restrictions to those two intervals are strongly 312-avoiding. In
other words, each non-empty strongly 312-avoiding permutation p uniquely decomposes as
p = LR, where L is a strongly 312-avoiding permutation ending in the entry 1, and R is a
(possibly empty) strongly 312-avoiding permutation.

Therefore, if Sav312(z) =
∑

n≥0 Savn(312)z
n, and B(z) is the ordinary generating function

for the number of strongly 312-avoiding permutations ending in 1, then the equality

Sav312(z) = 1 +B(z)Sav312(z), (1)

holds. This motivates our analysis of strongly 312-avoiding permutations that end in the
entry 1.

3.1 Permutations ending in 1

Our goal in this section is to prove the following theorem that characterizes strongly 312-
avoiding permutations that end in 1.

Theorem 3.1. For any permutation p ending in 1, the following two statements are equivalent.

(A) The permutation p is strongly 312-avoiding.

(B) The permutation p has form p = (k + 1)(k + 2) · · ·n k(k − 1)(k − 2) · · · 1 where k ≥ n
2 . That

is, p is unimodal beginning with its n − k ≤ n
2 largest entries in increasing order followed by

the remaining k smallest entries in decreasing order.
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We will prove this theorem through a sequence of lemmas. In this section, we will assume
p is a permutation of length n ending in its entry 1. First, we will show that strongly 312-
avoiding permutations must end in a long decreasing subsequence.

Lemma 3.2. Let p = p1p2 · · · pn−11 be a strongly 312-avoiding permutation. If n ≥ 2, then pn−1 = 2.

Proof. Suppose by way of contradiction that pi = 2 where i 6= n − 1. Then because p must
avoid 312, we know that pj < pk if j ≤ i < k < n. Hence pi+j = n for some positive integer j.

Now consider p2. Note first p2(i+ j) = 1 and p2(n) = p1. There are at least (n− 1)− (i+
1)+1 = n−i−1 entries (namely pi+1, pi+2, . . . , pn−1) all of which are larger than p1. However,
there are at most n − 1 − (i + 2) + 1 = n − i − 2 positions between 1 and p1 in p2. Hence at
least one of these large entries appears before the 1 which creates the forbidden 312 pattern in
p2.

Remark 3.3. When n appears in a strongly 312-avoiding permutation p, the entries that follow n
must be in decreasing order to avoid a 312 pattern in p.

We now extend Lemma 3.2 to show a strongly 312-avoiding permutation p must end in a
consecutive decreasing sequence of length at least n

2 .

Lemma 3.4. Let p = p1p2 · · · pn−11 be a strongly 312-avoiding permutation ending in 1. The smallest
dn2 e entries of p appear in the last dn2 e positions in decreasing order.

Proof. By way of contradiction, let us assume that p is a strongly 312-avoiding permutation,
and let us also assume that the longest decreasing subsequence at the end of p that consists
of consecutive integers in consecutive positions starts with the entry m < n

2 . So m + 1 is the
smallest entry where p deviates from the described form.

Then if pi = m+1, we have 1 ≤ i ≤ n−m−1. As with Lemma 3.2, the entries p1, p2, . . . , pi
must all be smaller than the entries pi+1, pi+2, . . . , pn−m, and in particular pi+j = n for some
positive integer j. (Otherwise, p would contain a 312-pattern with pi = m+1 in the middle. )

We now consider p2. Note first p2(i+ j) = 1.
Notice p2(i) = pm+1. If i < m+1, then pm+1 > p1 since pm+1 appears to the right of m+1

and m+ 1 < n−m+ 1 so pm+1 is not part of our descending sequence of small entries. This
means p2(i)p2(i+ j)p2(n) form a 312-pattern in p2.

Otherwise, i ≥ m + 1. Then p(r) = i + 1 for some r < i. That is, one of the entries to the
left of m + 1 in p maps to the position of a larger element to the right of m + 1 in p. Hence,
p2(r)p2(i+ j)p2(n) form a 312 pattern in p2.

Thus every strongly 312-avoiding permutation p must end with a consecutive decreasing
sequence of at least half of its smallest entries.

Next, we show that except for the monotone decreasing permutation, all strongly 312-
avoiding permutations p begin with an ascent.

Lemma 3.5. If p is a strongly 312-avoiding permutation ending in 1, and p begins with a descent,
then p is the decreasing permutation n (n− 1) · · · 3 2 1.
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Proof. Suppose that p does begin with a descent, that is, suppose p1 > p2. Then, first notice
if p1 6= n, then in p2, we have n appearing somewhere in the first n − 2 positions. However,
then n with the last two entries p2, p1 form a 312-pattern in p2. Hence if p begins with a
descent, then p1 = n. Now, as mentioned in Remark 3.3, all subsequent entries must appear
in descending order to avoid a 312-pattern in p.

By Lemma 3.4, we know that a strongly 312-avoiding permutation p that ends in 1 ends
with at least a half of its smallest entries forming a decreasing subsequence of consecutive
entries. We now extend this to complete our proof that p must have the unimodal structure
described in Theorem 3.1 be a strongly 312-avoiding permutation.

Lemma 3.6. A strongly 312-avoiding permutation p ending in its entry 1 must be of the form p =
(k + 1)(k + 2) · · ·n k(k − 1)(k − 2) · · · 1.

Proof. Let k be the length of the longest consecutive decreasing sequence at the end of p. Now
consider the large entries k+1, k+2, . . . , n. If p does not satisfy the structure, then at least two
of these large entries, say pi, pi+1 that form a descent. Of all the descents, choose the descent
such that pi+1 is the smallest.

We first note that not only can must these large entries of p avoid 312, they must also avoid
forming a 213 patten in p. This is since the large entries appear in the first n

2 positions in p
and the entries corresponding to those positions are in decreasing order in p by Lemma 3.4.
Hence a 213 of large entries in p would form a 312 pattern in p2.

Suppose any of p1, p2, . . . , pi−1 is smaller than pi+1, say pi−j . Thus pi−jpipi+1 forms a 213
in p which is forbidden.

Otherwise, there must another larger entry pi+2 after pi+1 since otherwise, pi+1 would be
part of the long decreasing sequence. However, this forces pipi+1pi+2 to form a 213 or a 312 in
p, both of which are not allowed.

Hence if p is a strongly 312-avoiding permutation, it must be of the form

p = (k + 1)(k + 2) · · ·n k(k − 1)(k − 2) · · · 1.

To complete the proof of Theorem 3.1, we show these conditions are not only necessary,
but also sufficient.

Proposition 3.7. Any permutation p = (k + 1)(k + 2) · · ·n k(k − 1)(k − 2) · · · 1 where k ≥ n
2 is a

strongly 312-avoiding permutation.

Proof. One can see that p does not contain a 312 pattern. One can then calculate p2 is composed
of the following three parts:

1. The first n− k entries will be (n− k), . . . , 3, 2, 1 respectively.

2. The next k − (n − k) = 2k − n entries correspond to entries with values and positions
k, (k − 1), . . . , n− k + 1 in p. Because the order of these entries is monotone decreasing
in p, these entries will be in increasing order in p2.
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3. The last n− k entries will reverse the order of the first n− k entries in p. That is, the last
n− k entries of p2 are n, (n− 1), . . . , (k + 1).

Hence p2 = (n− k) (n− k − 1) · · · 3 2 1 (n− k + 1) (n− k + 2) · · · k n (n− 1) · · · (k + 1); a
concatenation of three blocks of monotone sequences in increasing order. Thus p2 avoids 312
as well. As such, p is a strongly 312-avoiding permutation.

3.2 Enumeration

Rearranging (1), we get the equality

Sav312(z) =
1

1−B(z)
. (2)

It follows from Theorem 3.1 that there are bn2 c strongly 312-avoiding permutations of length
n and ending in 1 if n ≥ 2, and there is one such permutation if n = 1. Therefore,

B(z) = z +
(z + 1)z2

(1− z2)2
=

z4 − z3 + z

(z − 1)2(z + 1)
.

So (2) yields

Sav312(z) =
−z3 + z2 + z − 1

z4 − 2z3 + z2 + 2z − 1
.

So in particular, Sav312(z) is rational. Its root of smallest modulus is about 0.4689899435,
so the exponential growth rate of the sequence of the numbers Sav312(n) is the reciprocal of
that root, or about 2.132241882. The first few elements of the sequence, starting with n = 1,
are 1, 2, 4, 9, 19, 41, 87, 186, 396, 845.

Interestingly, the sequence is in the Encyclopedia of Integer Sequences [6] as Sequence
A122584, where it is mentioned in connection to work in Quantum mechanics [7].

3.3 Equivalent patterns

As the pattern 231 is the inverse of 312, it is straightforward to see that p is strongly 231-
avoiding if and only if p−1 is strongly 312-avoiding. Therefore, Sav312(n) = Sav231(n) for all
n.

The previous paragraph shows that Savq(n) = Savq−1(n) for all n. The following result,
while similar in flavor, is a little bit less obvious.

Proposition 3.8. Let q be any pattern, and let q′ denote the reverse complement of q. Then

Savq(n) = Savq′(n)

for all positive integers n.
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Proof. Let p be a permutation of length n, and let r denote the involution (1 n)(2 n−1) · · · . Let
us multiply permutations left to right. Then pr is the reverse of p, while rp is the complement
of p. Note that (rp)r = r(pr), showing why it does not matter in which order we take the
reverse and the complement of a permutation.

Now the square of the reverse complement of p2 is

(rpr)(rpr) = rprrpr = rp2r,

since r is an involution, so r2 is the identity. On the other hand, rp2r is also the reverse
complement of p2.

If p is strongly q-avoiding, then in particular, p is q-avoiding, so the reverse complement p′

of p avoids q′. Furthermore, p2 avoids q, so the reverse complement of p2, which we just proved
is also the square of the reverse complement of p also avoids q′. So p′ is strongly q′-avoiding.

As a consequence, Sav132(n) = Sav213(n) for all n. This provides some additional moti-
vation to compute the numbers Sav132(n). We will discuss that very difficult task in Section
5.

4. THE PATTERN 321

It is straightforward to prove a lower bound for the numbers Sav321(n) that shows that for
large n, the inequality Sav321(n) > Sav312(n) holds.

Indeed, let us call a permutation p = p1p2 · · · pn block-cyclic if it has the following proper-
ties.

1. It is possible to cut p into blocks B1, B2, . . . , Bt of entries in consecutive positions so that
for all i < j, the block Bi is on the left of the block Bj , and each entry in Bi is smaller
than each entry in Bj , and

2. Each block is either a singleton, or its entries can be written in one-line notation as
(a+ i) (a+ i+1) · · · (a+k) (a+1) · · · (a+ i−1), for some integers 1 < i ≤ k. That is, each
block is a singleton or a power of the cycle (a+ 1 a+ 2 · · · a+ k) that is not the identity.
(It follows from Property 1 that the set of entries in each block is an interval.)

Example 4.1. The following are all block-cyclic (the bars are indicating the border between
blocks).

1. p = 1|423|65|897,

2. p = 4123|5|8967,

3. p = |1|2|3|4|5.

Note that each block-cyclic permutation is 321-avoiding. Furthermore, any power of a
block-cyclic permutation is block-cyclic, and so it is also 321-avoiding. Therefore, block-
cyclic permutations are all 321-avoiding. Let hn be the number of block-cyclic permutations
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of length n, and let H(z) =
∑

n≥0 hnz
n. The number of allowed blocks of size k is 1 if k = 1,

and k−1 if k > 1 (since longer blocks cannot be monotone increasing), leading to the formula

H(z) =
1

1− z −
∑

k≥2(k − 1)zk
=

1

1− z − z2

(1−z)2
=

(1− z)2

1− 3z + 2z2 − z3
.

The singularity of smallest modulus of the denominator is about 0.430159709, so the expo-
nential growth rate of the sequence hn is the reciprocal of that number, or about 2.324717957.
As hn ≤ Sav321(n) for all n, we have proved the following.

Corollary 4.2. The inequality

2.3247 ≤ lim sup
n→∞

n
√

Sav321(n)

holds.

Note that this proves that for large n, there are more permutations so that all their powers
avoid 321 than permutations so that just they and their square avoids 312. It is possible to
improve this lower bound with more complicated constructions, but we have no conjecture
as to what the actual growth rate of the sequence Sav321(n) is.

5. THE PATTERN 132

We did not succeed in our efforts to enumerate strongly 132-avoiding permutations. On the
one hand, the set of such permutations clearly contains all involutions that avoid 132, and
the number of such involutions is known to be

(
n
bn/2c

)
. Therefore, the exponential growth

rate of the sequence of the numbers Sav132(n) is at least 2. On the other hand, the first few
terms of the sequence starting with n = 1 are 1, 2, 5, 12, 24, 50, 101, 202, 398, 806, 1568, 3148,
6198, 12306, 24223, 48314, which seems to suggest an exponential growth rate of exactly 2.
Considering the first 40 terms, the trend holds.

Therefore, we ask the following questions.

Question 5.1. Is it true that
lim
n→∞

n
√

Sav132(n) = 2?

Note that we do not even know that the limit in the previous question exists.

Question 5.2. Is it true that for all positive integers n, the inequality

Sav132(n) ≤ 2n

holds?

Note that if a permutation p is of order three, that is, all its cycle lengths are 1 or 3, then
p2 = p−1, so among such permutations, all 132-avoiding permutations are automatically
strongly 132-avoiding. This raises the following question.
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Question 5.3. How many 132-avoiding permutations of length n are there in which each cycle length
is 1 or 3?
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[3] M. Bóna, A Walk Through Combinatorics, 4th edition, World Scientific, 2016.
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