
On Two Related Questions of Wilf ConerningStandard Young TableauxMikl�os B�onaDepartment of MathematisUniversity of FloridaGainesville FL 32611-8105USANovember 5, 2008AbstratWe onsider two questions of Wilf related to Standard Young Tableaux.We provide a partial answer to one question, and that will lead us toa more general answer to the other question. Our answers are purelyombinatorial.1 IntrodutionIn 1992, in his paper [9℄, Herb Wilf has proved the following interestingresult.Theorem 1 (Wilf, [9℄.) Let uk(n) be the number of permutations of lengthn that ontain no inreasing subsequene of length k + 1, and let yk(n) bethe number of Standard Young Tableaux on n boxes that have no rows longerthan k. Then for all even positive integers k, the equality�2nn �uk(n) = 2nXr=0�2nr �(�1)ryk(r)yk(2n� r) (1)holds.Wilf's proof of Theorem 1 was not elementary; it used modi�ed Besselfuntions and omputed the determinant of a Toeplitz matrix. Therefore,Wilf asked the following two intriguing questions.1



1. Is there a purely ombinatorial proof for Theorem 1 ?2. What statement orresponds to Theorem 1 for odd k?In this paper, we answer Question 1 in a speial ase, whih then willlead us to a more general answer to Question 2. This answer will be aformula that will still ontain a summation sign, but eah summand willbe non-negative, whih will explain why the answer is always non-negative.The number of nonzero summands will be half of what it is in (1), and thesummands will be signi�antly smaller than in (1).We point out that in another speial ase, that of k = 2, a simple andelegant bijetive proof has reently been given by Rebea Smith and MiahColeman [2℄.We will assume familiarity with the Robinson-Shensted orrespondenebetween permutations of length n and pairs of Standard Young Tableauxon n boxes and of the same shape. In partiular, we will need the followingfats.1. There is a one-to-one orrespondene RS between involutions on ann-element set and Standard Young Tableaux on n boxes.2. The length of the longest inreasing subsequene of the involution v isequal to the length of the �rst row of RS(v), and3. the length of the longest dereasing subsequene of the involution v isequal to the length of the �rst olumn of RS(v).Readers who want to deepen their knowledge of the Robinson-Shenstedorrespondene should onsult the book [5℄ of Brue Sagan. The Robinson-Shensted orrespondene makes Theorem 1 even more intriguing, sine bothsides of (1) an be interpreted in terms of Standard Young Tableaux as wellas in terms of permutations.In Setion 3, we will also need the following, somewhat less well-knownresult of Janet Simpson Beissinger, whih is impliit in an earlier paper ofMarel-Paul Sh�utzenberger [6℄.Theorem 2 [1℄ Let v be an involution, and let RS(v) be its image underthe Robinson-Shensted orrespondene. Then the number of �xed points ofv is equal to the number of odd olumns of RS(v).
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2 When k = 2nIn this setion, we bijetively prove Theorem 1 in the speial ase whenk = 2n. It is lear that in that speial ase, the requirement on the inreasingsubsequenes on the left-hand side of (1), and the requirement on the lengthof rows on the right-hand side of (1) are automatially satis�ed. Therefore, ify(m) denotes the number of involutions of an m-element set, then Theorem1 simpli�es to the following proposition.Proposition 1 For all positive integers n, we have�2nn �n! = 2nXr=0�2nr �(�1)ry(r)y(2n� r): (2)Proof: Let [i℄ denote the set f1; 2; � � � ; ig. Let An be the set of all permu-tations of the elements of n-element subsets of [2n℄. Then the left-hand sideof (2) is equal to jAnj.Let Bn be the set of ordered pairs (p; q), where p is an involution on asubset sp of [2n℄, and q is an involution on the set [2n℄� sp, the omplementof sp in [2n℄. Then the right-hand side of (2) ounts the elements of Bntaking the parity of r into aount. More preisely, the right-hand side of(2) is equal to the number of elements of Bn in whih jspj has an even sizeminus the number of elements of Bn in whih jspj has an odd size.Now we are going to de�ne an involution f on a subset of Bn. Let(p; q) 2 Bn. As p is an involution, all yles of p are of length one (theseare also alled �xed points) or length two. Let F (p; q) be the set of all �xedpoints of p and of all �xed points of q. Let M(p; q) be the maximal elementof F (p; q) as long as F (p; q) is a non-empty set. Now move M(p; q) to theother involution in (p; q). That is, if M(p; q) was a �xed point of p, thenmove M(p; q) to q, and if M(p; q) was a �xed point of q, then move M to p.Call the resulting pair of involutions f(p; q) = (p0; q0).Example 1 Let n = 4, let p = (31)(62)(5), and let q = (7)(84). ThenF (p; q) = f5; 7g, so M(p; q) = 7, and therefore, f(p; q) = (p0; q0), wherep0 = (31)(5)(62)(7) and q0 = (84).It is lear that f(p0; q0) = (p; q), sine F (p; q) = F (p0; q0), and soM(p; q) =M(p0; q0). So applying f a seond time simply moves M(p; q) bak to itsoriginal plae.As the number of elements in p and in p0 di�ers by exatly one, thesetwo numbers are of di�erent parity, and so the total ontribution of (p; q)3



and f(p; q) to the right-hand side of (2) is 0. Therefore, the only pairs (p; q)whose ontribution is not aneled by the ontribution of f(p; q) are thepairs for whih f(p; q) is not de�ned, that is, pairs (p; q) in whih both p andq are �xed point-free involutions.Noting that �xed point-free involutions are neessarily of even length,this shows that (2) will be proved if we an show that�2nn �n! = 2nXr=0�2nr �x(r)x(2n� r); (3)where x(r) is the number of �xed point-free involutions of length r.This equality is straightforward to prove omputationally, using the fatthat x(2t) = (2t�1) � (2t�3) � � � � �1 = (2t�1)!! and x(2t+1) = 0. However,for the sake of ombinatorial purity, we provide a bijetive proof.The left-hand side ounts the ways to hoose n elements a1; a2; � � � ; anof [2n℄ and then to arrange them in a line. Let a 2 An denote suh an hoieand arrangement. Now let i1 < i2 < � � � < in be the elements of [2n℄ thatwe did not hoose, listed inreasingly. Take the �xed point-free involutionwhose yles are the 2-yles (ij ; aj), for 1 � j � n. Color the yles inwhih ij < aj red, and the yles in whih ij > aj blue. Call the obtained�xed point-free permutation with biolored yles g(a).It is then lear that g maps into the set Dn of �xed-point free permuta-tions on [2n℄ whose yles are olored red or blue. The right-hand side of (3)ounts preisely suh involutions. Finally, it is straightforward to see thatg : An ! Dn is a bijetion as it has an inverse. (Just hoose the smallerentry in eah of the red yles and the larger entry in eah of the blue ylesto reover i1; i2; � � � ; in.) This ompletes the proof of (3), and therefore, ofProposition 1. 33 When k is oddIf we want to �nd a ombinatorial proof of Theorem 1 along the line of theproof of Proposition 1, we enounter several diÆulties. First, inserting anew �xed point into a partial permutation an inrease the length of itslongest inreasing subsequene, taking it thereby out of the set that is beingounted. More importantly, equality (3) no longer holds if we replae n!by uk(n) on its left-hand side, and x(h) by the number of �xed point-freeinvolutions with no inreasing subsequenes longer than k on its right-hand4



side. Indeed, for k = 2 and n = 3, the left-hand side would be �2nn �u2(3) =20 �5 = 100, while the right-hand side would be 10+15 �3+15 �3+10 = 110.It is surprising that for the ase of odd k, �xed points, and �xed point-free involutions, turn out to be relevant again. We point out that we willbe onsidering involutions without long dereasing rather than inreasingsubsequenes.Note that yk(r) is equal to both the number of involutions on an r-element set with no inreasing subsequenes longer than k, and the numberinvolutions on an r-element set with no dereasing subsequenes longer thank (just take onjugates of the orresponding Standard Young Tableaux).However, this symmetry is broken if we restrit our attention to �xed point-free involutions, sine the onjugate of a tableaux with even olumns onlymay have odd olumns, and our laim follows from Theorem 2.Let xk(r) be the number of �xed point-free involutions of length r withno dereasing subsequenes with more than k elements. Note that xk(r) = 0if r is odd.Theorem 3 For all positive integers n, and for all odd positive integers kthe equality2nXr=0�2nr �xk(r)xk(2n� r) = 2nXr=0(�1)r�2nr �yk(r)yk(2n� r) (4)holds.Proof: Reall from the proof of Proposition 1 that Bn is the set of orderedpairs (p; q), where p is an involution on a subset sp of [2n℄, and q is aninvolution on the set [2n℄� sp, the omplement of sp in [2n℄.Let B(n; k; r) be the subset of Bn onsisting of pairs (p; q) so that neitherp nor q has a dereasing subsequene longer than k. Note that here p is aninvolution of length r and q is an involution of length 2n�r. It is then learthat jB(n; k; r)j = �2nr �yk(r)yk(2n� r):Let B(n; k) = [rB(n; k; r).Reall the involution f from the proof of Proposition 1, (the involutionthat took the largest �xed point present in p [ q and moved it to the otherinvolution), and let fn;k be the restrition of f to the set B(n; k).Our theorem will be proved if we an show that fn;k maps into B(n; k).Indeed, that would show that the only pairs (p; q) 2 B(n; k) whose ontri-bution to the right-hand side of (4) is not aneled by the ontribution of5



fn;k(p; q) are the pairs for whih f(p; q) is not de�ned. It follows from thede�nition of fn;k that these are the pairs in whih both p and q are �xedpoint-free involutions.Our main tool is the following lemma.Lemma 1 Let w be an involution whose longest dereasing subsequene is oflength 2m+1. Then eah longest dereasing subsequene of w must ontaina �xed point.Proof: We use indution on z, the number of �xed points of w. If z = 0,then the statement is vauously true, sine by Theorem 2 the StandardYoung Tableau orresponding to w has no odd olumns, so the length of its�rst olumn (and so, the length of the longest dereasing subsequene of w)annot be odd.Otherwise, assume that we know that the statement holds for z � 1.Also assume that w has z > 0 �xed points, and w has a longest dereasingsubsequene s of length 2m + 1 that does not ontain any �xed points.Remove a �xed point from w to get w0. Then w0 still has a longest dereasingsubsequene s of length 2m + 1 that ontains no �xed points, even thoughw0 has only z � 1 �xed points, ontraditing our indution hypothesis. 3Let (p; q) 2 B(n; k). In order to show that fn;k maps into B(n; k), weneed to show that fn;k(p; q) = f(p; q) = (p0; q0) has no dereasing subse-quene longer than k. The ation of f on (p; q) onsists of taking a �xedpoint of one of p and q and adding it to the other. We an assume withoutloss of generality that a �xed point of p is being moved to q. So the longestdereasing subsequene of p0 is not longer than that of p, and so, not longerthan k sine p0 is a substring of p. There remains to show that the longestdereasing subsequene of q0 is also not longer than k.As q0 di�ers from q only by the insertion of the �xed pointM =M(p; q),the only way q0 ould possibly have a dereasing subsequene longer than kwould be when q itself has a dereasing subsequene of length k = 2m+ 1.In that ase, by Lemma 1, all maximum-length dereasing subsequenes ofq ontain a �xed point. So when M is inserted into q, and q0 is formed,M annot extend any of the maximum-length dereasing subsequenes ofq beause that would mean that two �xed points are part of the same de-reasing subsequene. That is impossible, sine �xed points form inreasingsubsequenes.So indeed, fn;k maps into B(n; k), and our laim is proved. 36



3.1 The speial ase k = 3The �rst speial ase of Theorem 3 is when k = 1. Then xk(r) = 0 for anyr, while yk(r) = 1 for any r. So (4) simpli�es to the well-known binomial-oeÆient identity 0 = 2nXr=0(�1)r�2nr �:The speial ase of k = 3 is more interesting. We point out that in thisase, it is known [3℄ that y3(n) =Pbn=2i=0 �n2i�Ci, where Ci = �2ii �=(n + 1) isthe ith Catalan number. The numbers y3(n) are alled theMotzkin numbers.It follows from Theorem 2 that if v is �xed-point free, then RS(v) hasno odd olumns. Therefore, x2m+1(r) = x2m(r). In partiular, for k = 3,Theorem 3 simpli�es to2nXr=0(�1)r�2nr �y3(r)y3(2n� r) = 2nXr=0�2nr �x2(r)x2(2n� r):Note that x2(r) is just the number of Standard Young Tableaux in whiheah olumn is of length two (of even length not more than two). Thenumber of suh tableaux is well-known (see for instane Exerise 6.19.ww of[8℄) to be the Catalan number Cr=2 if r is even, and of ourse, 0 if r is odd.Therefore, the previous displayed equation simpli�es to2nXr=0(�1)r�2nr �y3(r)y3(2n� r) =Xi �ni��2n2i�CiCn�i:It turns out that the right-hand side is a well-known sequene. It issequene A005568 in [7℄. In partiular, it is proved in [4℄, that the nthelement fn of this sequene has the losed form fn = CnCn+1. Furthermore,it is shown in [3℄ that fn = y4(2n).So we have proved the following identity.Corollary 1 For all positive integers n, we have2nXr=0(�1)r�2nr �y3(r)y3(2n� r) = y4(2n) = CnCn+1 = �2nn ��2n+2n+1 �(n+ 1)(n+ 2) :
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