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sUniversity of FloridaGainesville FL 32611-8105USANovember 5, 2008Abstra
tWe 
onsider two questions of Wilf related to Standard Young Tableaux.We provide a partial answer to one question, and that will lead us toa more general answer to the other question. Our answers are purely
ombinatorial.1 Introdu
tionIn 1992, in his paper [9℄, Herb Wilf has proved the following interestingresult.Theorem 1 (Wilf, [9℄.) Let uk(n) be the number of permutations of lengthn that 
ontain no in
reasing subsequen
e of length k + 1, and let yk(n) bethe number of Standard Young Tableaux on n boxes that have no rows longerthan k. Then for all even positive integers k, the equality�2nn �uk(n) = 2nXr=0�2nr �(�1)ryk(r)yk(2n� r) (1)holds.Wilf's proof of Theorem 1 was not elementary; it used modi�ed Besselfun
tions and 
omputed the determinant of a Toeplitz matrix. Therefore,Wilf asked the following two intriguing questions.1



1. Is there a purely 
ombinatorial proof for Theorem 1 ?2. What statement 
orresponds to Theorem 1 for odd k?In this paper, we answer Question 1 in a spe
ial 
ase, whi
h then willlead us to a more general answer to Question 2. This answer will be aformula that will still 
ontain a summation sign, but ea
h summand willbe non-negative, whi
h will explain why the answer is always non-negative.The number of nonzero summands will be half of what it is in (1), and thesummands will be signi�
antly smaller than in (1).We point out that in another spe
ial 
ase, that of k = 2, a simple andelegant bije
tive proof has re
ently been given by Rebe

a Smith and Mi
ahColeman [2℄.We will assume familiarity with the Robinson-S
hensted 
orresponden
ebetween permutations of length n and pairs of Standard Young Tableauxon n boxes and of the same shape. In parti
ular, we will need the followingfa
ts.1. There is a one-to-one 
orresponden
e RS between involutions on ann-element set and Standard Young Tableaux on n boxes.2. The length of the longest in
reasing subsequen
e of the involution v isequal to the length of the �rst row of RS(v), and3. the length of the longest de
reasing subsequen
e of the involution v isequal to the length of the �rst 
olumn of RS(v).Readers who want to deepen their knowledge of the Robinson-S
hensted
orresponden
e should 
onsult the book [5℄ of Bru
e Sagan. The Robinson-S
hensted 
orresponden
e makes Theorem 1 even more intriguing, sin
e bothsides of (1) 
an be interpreted in terms of Standard Young Tableaux as wellas in terms of permutations.In Se
tion 3, we will also need the following, somewhat less well-knownresult of Janet Simpson Beissinger, whi
h is impli
it in an earlier paper ofMar
el-Paul S
h�utzenberger [6℄.Theorem 2 [1℄ Let v be an involution, and let RS(v) be its image underthe Robinson-S
hensted 
orresponden
e. Then the number of �xed points ofv is equal to the number of odd 
olumns of RS(v).
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2 When k = 2nIn this se
tion, we bije
tively prove Theorem 1 in the spe
ial 
ase whenk = 2n. It is 
lear that in that spe
ial 
ase, the requirement on the in
reasingsubsequen
es on the left-hand side of (1), and the requirement on the lengthof rows on the right-hand side of (1) are automati
ally satis�ed. Therefore, ify(m) denotes the number of involutions of an m-element set, then Theorem1 simpli�es to the following proposition.Proposition 1 For all positive integers n, we have�2nn �n! = 2nXr=0�2nr �(�1)ry(r)y(2n� r): (2)Proof: Let [i℄ denote the set f1; 2; � � � ; ig. Let An be the set of all permu-tations of the elements of n-element subsets of [2n℄. Then the left-hand sideof (2) is equal to jAnj.Let Bn be the set of ordered pairs (p; q), where p is an involution on asubset sp of [2n℄, and q is an involution on the set [2n℄� sp, the 
omplementof sp in [2n℄. Then the right-hand side of (2) 
ounts the elements of Bntaking the parity of r into a

ount. More pre
isely, the right-hand side of(2) is equal to the number of elements of Bn in whi
h jspj has an even sizeminus the number of elements of Bn in whi
h jspj has an odd size.Now we are going to de�ne an involution f on a subset of Bn. Let(p; q) 2 Bn. As p is an involution, all 
y
les of p are of length one (theseare also 
alled �xed points) or length two. Let F (p; q) be the set of all �xedpoints of p and of all �xed points of q. Let M(p; q) be the maximal elementof F (p; q) as long as F (p; q) is a non-empty set. Now move M(p; q) to theother involution in (p; q). That is, if M(p; q) was a �xed point of p, thenmove M(p; q) to q, and if M(p; q) was a �xed point of q, then move M to p.Call the resulting pair of involutions f(p; q) = (p0; q0).Example 1 Let n = 4, let p = (31)(62)(5), and let q = (7)(84). ThenF (p; q) = f5; 7g, so M(p; q) = 7, and therefore, f(p; q) = (p0; q0), wherep0 = (31)(5)(62)(7) and q0 = (84).It is 
lear that f(p0; q0) = (p; q), sin
e F (p; q) = F (p0; q0), and soM(p; q) =M(p0; q0). So applying f a se
ond time simply moves M(p; q) ba
k to itsoriginal pla
e.As the number of elements in p and in p0 di�ers by exa
tly one, thesetwo numbers are of di�erent parity, and so the total 
ontribution of (p; q)3



and f(p; q) to the right-hand side of (2) is 0. Therefore, the only pairs (p; q)whose 
ontribution is not 
an
eled by the 
ontribution of f(p; q) are thepairs for whi
h f(p; q) is not de�ned, that is, pairs (p; q) in whi
h both p andq are �xed point-free involutions.Noting that �xed point-free involutions are ne
essarily of even length,this shows that (2) will be proved if we 
an show that�2nn �n! = 2nXr=0�2nr �x(r)x(2n� r); (3)where x(r) is the number of �xed point-free involutions of length r.This equality is straightforward to prove 
omputationally, using the fa
tthat x(2t) = (2t�1) � (2t�3) � � � � �1 = (2t�1)!! and x(2t+1) = 0. However,for the sake of 
ombinatorial purity, we provide a bije
tive proof.The left-hand side 
ounts the ways to 
hoose n elements a1; a2; � � � ; anof [2n℄ and then to arrange them in a line. Let a 2 An denote su
h an 
hoi
eand arrangement. Now let i1 < i2 < � � � < in be the elements of [2n℄ thatwe did not 
hoose, listed in
reasingly. Take the �xed point-free involutionwhose 
y
les are the 2-
y
les (ij ; aj), for 1 � j � n. Color the 
y
les inwhi
h ij < aj red, and the 
y
les in whi
h ij > aj blue. Call the obtained�xed point-free permutation with bi
olored 
y
les g(a).It is then 
lear that g maps into the set Dn of �xed-point free permuta-tions on [2n℄ whose 
y
les are 
olored red or blue. The right-hand side of (3)
ounts pre
isely su
h involutions. Finally, it is straightforward to see thatg : An ! Dn is a bije
tion as it has an inverse. (Just 
hoose the smallerentry in ea
h of the red 
y
les and the larger entry in ea
h of the blue 
y
lesto re
over i1; i2; � � � ; in.) This 
ompletes the proof of (3), and therefore, ofProposition 1. 33 When k is oddIf we want to �nd a 
ombinatorial proof of Theorem 1 along the line of theproof of Proposition 1, we en
ounter several diÆ
ulties. First, inserting anew �xed point into a partial permutation 
an in
rease the length of itslongest in
reasing subsequen
e, taking it thereby out of the set that is being
ounted. More importantly, equality (3) no longer holds if we repla
e n!by uk(n) on its left-hand side, and x(h) by the number of �xed point-freeinvolutions with no in
reasing subsequen
es longer than k on its right-hand4



side. Indeed, for k = 2 and n = 3, the left-hand side would be �2nn �u2(3) =20 �5 = 100, while the right-hand side would be 10+15 �3+15 �3+10 = 110.It is surprising that for the 
ase of odd k, �xed points, and �xed point-free involutions, turn out to be relevant again. We point out that we willbe 
onsidering involutions without long de
reasing rather than in
reasingsubsequen
es.Note that yk(r) is equal to both the number of involutions on an r-element set with no in
reasing subsequen
es longer than k, and the numberinvolutions on an r-element set with no de
reasing subsequen
es longer thank (just take 
onjugates of the 
orresponding Standard Young Tableaux).However, this symmetry is broken if we restri
t our attention to �xed point-free involutions, sin
e the 
onjugate of a tableaux with even 
olumns onlymay have odd 
olumns, and our 
laim follows from Theorem 2.Let xk(r) be the number of �xed point-free involutions of length r withno de
reasing subsequen
es with more than k elements. Note that xk(r) = 0if r is odd.Theorem 3 For all positive integers n, and for all odd positive integers kthe equality2nXr=0�2nr �xk(r)xk(2n� r) = 2nXr=0(�1)r�2nr �yk(r)yk(2n� r) (4)holds.Proof: Re
all from the proof of Proposition 1 that Bn is the set of orderedpairs (p; q), where p is an involution on a subset sp of [2n℄, and q is aninvolution on the set [2n℄� sp, the 
omplement of sp in [2n℄.Let B(n; k; r) be the subset of Bn 
onsisting of pairs (p; q) so that neitherp nor q has a de
reasing subsequen
e longer than k. Note that here p is aninvolution of length r and q is an involution of length 2n�r. It is then 
learthat jB(n; k; r)j = �2nr �yk(r)yk(2n� r):Let B(n; k) = [rB(n; k; r).Re
all the involution f from the proof of Proposition 1, (the involutionthat took the largest �xed point present in p [ q and moved it to the otherinvolution), and let fn;k be the restri
tion of f to the set B(n; k).Our theorem will be proved if we 
an show that fn;k maps into B(n; k).Indeed, that would show that the only pairs (p; q) 2 B(n; k) whose 
ontri-bution to the right-hand side of (4) is not 
an
eled by the 
ontribution of5



fn;k(p; q) are the pairs for whi
h f(p; q) is not de�ned. It follows from thede�nition of fn;k that these are the pairs in whi
h both p and q are �xedpoint-free involutions.Our main tool is the following lemma.Lemma 1 Let w be an involution whose longest de
reasing subsequen
e is oflength 2m+1. Then ea
h longest de
reasing subsequen
e of w must 
ontaina �xed point.Proof: We use indu
tion on z, the number of �xed points of w. If z = 0,then the statement is va
uously true, sin
e by Theorem 2 the StandardYoung Tableau 
orresponding to w has no odd 
olumns, so the length of its�rst 
olumn (and so, the length of the longest de
reasing subsequen
e of w)
annot be odd.Otherwise, assume that we know that the statement holds for z � 1.Also assume that w has z > 0 �xed points, and w has a longest de
reasingsubsequen
e s of length 2m + 1 that does not 
ontain any �xed points.Remove a �xed point from w to get w0. Then w0 still has a longest de
reasingsubsequen
e s of length 2m + 1 that 
ontains no �xed points, even thoughw0 has only z � 1 �xed points, 
ontradi
ting our indu
tion hypothesis. 3Let (p; q) 2 B(n; k). In order to show that fn;k maps into B(n; k), weneed to show that fn;k(p; q) = f(p; q) = (p0; q0) has no de
reasing subse-quen
e longer than k. The a
tion of f on (p; q) 
onsists of taking a �xedpoint of one of p and q and adding it to the other. We 
an assume withoutloss of generality that a �xed point of p is being moved to q. So the longestde
reasing subsequen
e of p0 is not longer than that of p, and so, not longerthan k sin
e p0 is a substring of p. There remains to show that the longestde
reasing subsequen
e of q0 is also not longer than k.As q0 di�ers from q only by the insertion of the �xed pointM =M(p; q),the only way q0 
ould possibly have a de
reasing subsequen
e longer than kwould be when q itself has a de
reasing subsequen
e of length k = 2m+ 1.In that 
ase, by Lemma 1, all maximum-length de
reasing subsequen
es ofq 
ontain a �xed point. So when M is inserted into q, and q0 is formed,M 
annot extend any of the maximum-length de
reasing subsequen
es ofq be
ause that would mean that two �xed points are part of the same de-
reasing subsequen
e. That is impossible, sin
e �xed points form in
reasingsubsequen
es.So indeed, fn;k maps into B(n; k), and our 
laim is proved. 36



3.1 The spe
ial 
ase k = 3The �rst spe
ial 
ase of Theorem 3 is when k = 1. Then xk(r) = 0 for anyr, while yk(r) = 1 for any r. So (4) simpli�es to the well-known binomial-
oeÆ
ient identity 0 = 2nXr=0(�1)r�2nr �:The spe
ial 
ase of k = 3 is more interesting. We point out that in this
ase, it is known [3℄ that y3(n) =Pbn=2
i=0 �n2i�Ci, where Ci = �2ii �=(n + 1) isthe ith Catalan number. The numbers y3(n) are 
alled theMotzkin numbers.It follows from Theorem 2 that if v is �xed-point free, then RS(v) hasno odd 
olumns. Therefore, x2m+1(r) = x2m(r). In parti
ular, for k = 3,Theorem 3 simpli�es to2nXr=0(�1)r�2nr �y3(r)y3(2n� r) = 2nXr=0�2nr �x2(r)x2(2n� r):Note that x2(r) is just the number of Standard Young Tableaux in whi
hea
h 
olumn is of length two (of even length not more than two). Thenumber of su
h tableaux is well-known (see for instan
e Exer
ise 6.19.ww of[8℄) to be the Catalan number Cr=2 if r is even, and of 
ourse, 0 if r is odd.Therefore, the previous displayed equation simpli�es to2nXr=0(�1)r�2nr �y3(r)y3(2n� r) =Xi �ni��2n2i�CiCn�i:It turns out that the right-hand side is a well-known sequen
e. It issequen
e A005568 in [7℄. In parti
ular, it is proved in [4℄, that the nthelement fn of this sequen
e has the 
losed form fn = CnCn+1. Furthermore,it is shown in [3℄ that fn = y4(2n).So we have proved the following identity.Corollary 1 For all positive integers n, we have2nXr=0(�1)r�2nr �y3(r)y3(2n� r) = y4(2n) = CnCn+1 = �2nn ��2n+2n+1 �(n+ 1)(n+ 2) :
A
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