A factorization theorem for m-level rook placements

by

Bruce E. Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027, USA
sagan@math.msu.edu

Let $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be an integer partition where the parts are listed in weakly increasing order. We also consider B as a Ferrers board where b_{j} is the height of column j and the columns are bottom justified. Letting $r_{k}(B)$ denote the number of placements of k nonattacking rooks on B and $x \downarrow_{k}=(x)(x-1) \cdots(x-k+1)$, we have the famous Factorization Theorem of Goldman-Joichi-White which states that

$$
\sum_{k \geq 0} r_{k}(B) x \downarrow_{n-k}=\prod_{j}\left(x+b_{j}-j+1\right)
$$

Briggs and Remmel considered a generalization of rook placements to m level rook placements which are related to wreath products C_{m} 乙 S_{N} where C_{m} is a cyclic group and S_{N} a symmetric group. Ordinary rook placements correspond to the case $m=1$. They were able to prove a version of the Factorization Theorem in this setting, but only for certain Ferrers boards. We give a generalization which holds for all Ferrers boards. Connections are also made with permutation statistics, q, t-Catalan numbers, and hyperplane arrangements. This is joint work with Kenneth Barrese, Nicholas Loehr and Jeffrey Remmel.

