The files of Sade (K.R.R) IF M 15 2190 dec ander F, New M(RIFM)=1. · R(f, M) 15 to collection of regular points FIX2 opt netuc, & continuous MGM(X,F) A point x 15 require for Mand F 1F Recall modellant measures as (Continuous Ergodic neary, cost) weak limit points of 5 My3 where Mn = L S + (5x) $\sum_{i} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n$ for a.e. pointx, this weak* aspunptionic average WR Meda result From Hwt: Mas about as along he orbit of x actually converges to M. . When 115 ergodic, the next treatem says hat Mn-> U in the weak topology E 1 20 86 (x) 3 8 d M · Theorem: It MIS ergodic and XER (F, a) (recall M(R(f, w))=1) then · Proof : Apply he HW to the definition of regular . Notice that regular is stronger than just the Engodichm. / 3 Given LELLA) 3 Full measure set y so hat xey implier · Pointwiss ergode heaven: F: (xyb, w) 2 is unpt and ergobic · Requiarity Fi(x, B, m) 15 mpt ergobic and continuous 3 full measure set y sach that for all a & C(x, 1R) o We examine he convergence of time averages to LE ROFENTS SRAM L M dof'E J Sada Space averages seen so far. Notice: one full mellesure set works for all & but I now continuous not just L' for all XeX and all AG C(X, R) Condition ?: F: (X, 18, 11) 15 mpt, ergodic and continuous and real thou Remark: So time averages = space averages for Ruery Point In X OR REAR RIF, WITX DEF! F. XJX, X ept metric, front, 15 on invariant Borel probability measure called uniquely ergodee if it has exactly Consequence: MIX, F) 15 a singleton, 2 MZ, which is an extreme point and thus ergodic Markov measures, Bernoulli pon easures, Derichia ousit uneasures... G: 222 is not uniquely ergodic, M(2, T) cowlains 15 uniquely ergobue, A MIS', RN= & Lebesque 3 Example (to be Shown): Ris'2 atouty, af Q (i.i.) Hable (E/R), I state for converges to a constant pointwise (1) Y de C(X,R), In 1=0 Theorem F.X > X cont on compact metall TFAF (i.i.) IM EMIXA) Such that Had C(X,R), VXEX 1 mg dofin 25 dd 4 (iv) f is uniquely expodic 12 5 20 4c) 22 [[allo-1|allo By hupomesus, Lias exists for all a so L. C(R, R) -> IR. Thus by the Diesa Tepwesentation Meovern 3 MeMIX) It is easy to sa L (a & + bp8)= a L(a) + b L(B) so L is linear. I'm 1 m-1 do first = L(a) by an argument we have N300 n = 0 a bounded, linear functional on C(X, R) Since de C(X,P) and X is compact, d is bounded This impliestrat [[a]] = 1 allo and so Lis with L(a) = Sadm. Now note Lldof) = (recall 11216 = mAx & x(x); x = x 3) and so by 1 1 1 2 0 0 F. the triangle inequality (L1) = (LII) | L(L) = Proof (i) = (i) 15 tructs We showed Existent The Implies MEM(X,F) We showed Existent I'm to the dofices and M(X,F) and by construction I'm to the dofices = Sadu, bue CKR) (Lili) = (iv) By hupothesis taccer, (P), XXX, (a dM = Suctan Wale C(x, IR) 1 2 dof (x) > Sada Sina Lia)= L(dof) we have Now assume te M(x, x). Since & 15 bounded and so in 1.30 of it is bounded by he same bound by the bounded convergence theorem but I is for invariant and we showed in a HW 13 Sing Sadais 12M150 those exists a unique MGK(X,+). 11(X)7 >co a constat Mus Sadder for all access PR) and we showed previously hat this implies (11)=1(i) We prove he contra positive First recall uniform convergence guag 1gn (x) - g(x) 1 < 8 XA NZNA AE OCEA To megate quis 3270 VN 3 NZN 3x 1gm (x) -g(x) 128 Now note that if I will do fi conveyers uniformly now note that if I will also in a part toustart to a constart, Bythe evgodice meover, that constart Sada Where 2/13= M/x, +) must be " tofi converges you tormly to a constant We must negate (i): Haccoxin) 3 Using an argument just like mat of Theorem on paye 3 of ETIT, we have More HIXFD Further Since Mn -> Mas wealely) 5 8 dMn > 5 8 d Mas and 50 i.e. it is an invariant measura. Mus Ma + M and Moo & M(X, F) , A and so f is not uniquely ergodic. 1 S B 2 Mag - SRAM 1 2 8