$$
\stackrel{\sigma}{4}
$$

 Notice that regular is stronger
We examine the conver pence of t
Space averages seen so far.
$-\frac{\text { Pontwise ergodic theorem: } f^{\prime}(\bar{X}, \beta,-1)}{\text { Given } \alpha \in L^{i}(\mu) \exists \text { full measure }}$

$$
\frac{1}{n} \sum_{L=0}^{n-1} \alpha_{0} f^{i}(x) \rightarrow S
$$

$$
\stackrel{n}{4}|x|
$$

$x^{x} \quad x=W^{\prime \prime}$
averayes = space averayes
in \bar{X} or $R(f, \mu)=$

$$
\text { ix } \begin{array}{ccc}
n & 1 \\
0 & 1 \\
0 & x & -15
\end{array}
$$

$\therefore \stackrel{M}{2} \leqslant \frac{0}{5}$ 4 $0_{0}^{\infty} w^{\infty}$
$\gamma \underset{\sim}{\psi} \frac{w}{\Sigma}$

constay unifordy

ergodec
$\frac{5}{5}$
$\frac{5}{3}$
$\frac{5}{5}$
5
5

※ֻ

$$
\begin{array}{ll}
2 & \\
3 & 2 \\
3 & 0 \\
0 & 0 \\
3 & 0
\end{array}
$$

$$
\therefore
$$

$\forall N \exists n>N$
0
\hat{n}
\hat{w}
\mathbf{T}

\because

$$
\begin{array}{llllll}
s \\
s & \\
\hline
\end{array}
$$

