$\begin{aligned} & N \\ & N\end{aligned}$
of prob spaces
$\begin{aligned} & \text { - Corresp ending to arch notion of equivalence. Af lecture we have a notion of equivalence: } \\ & \text { in the last live is a schematic for isomorphism of opt. } \\ & \text { mut. Her }\end{aligned}$

b^{N}
21
0
\bigcirc
n

$$
\sim \omega^{-}
$$

$$
\infty_{\infty}^{4}<w^{4}+5
$$

$$
\because \sum^{n} 39
$$

\bullet

い いい い い

$ज$

probability

$\wedge s$

C_{4}^{+}
${ }_{4}^{4}{ }^{2}$

$\Sigma 0$ g to

Prook
inte
by
to
in

$$
\begin{aligned}
& \phi: 1 \\
& \text { nof }
\end{aligned}
$$

$$
\begin{aligned}
& =\phi^{-1}\left(B \wedge m_{2}\right) \\
& \text { mat } \Phi \text { satisfies } \\
& \text { tian of conjugacy }
\end{aligned}
$$

ition
 .. 年 $10+\frac{2}{3}$?
$\begin{array}{lll} & y & y \\ & y & \sim \\ 9 & f & f \\ 0 & q & \\ 0 & s & a \\ \infty & & \sim\end{array}$

$$
\begin{aligned}
& \begin{array}{lll}
2 & 5 & 3 \\
0 & 3 & 3 \\
3 & 3 & 3 \\
0 & 3 & 5
\end{array}
\end{aligned}
$$

