
© 1
or N 合
 Cont. 111

$\stackrel{11}{i}$
 ample
treating
win Le
Lowed
Let
$\stackrel{\circ}{\circ}$ Ex

$$
\frac{8}{i+1} \frac{-18}{0}
$$

$$
\log 2=\log
$$

$$
\begin{aligned}
& \begin{array}{l}
5 \\
5 \\
5
\end{array} \\
& \begin{array}{lll}
n & 0 & 3 \\
y & & 3 \\
3 & 1 & 3 \\
3 & 0 & 3 \\
3 & & 3 \\
4 & n & 3 \\
5 & 0 & 3
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{9}{3}
\end{aligned}
$$

\pm

$$
\begin{array}{lll}
\text { के } & \text { o } & m \\
\text { s } \\
\text { s } & \text { o } & \bar{i}
\end{array}
$$

$$
\begin{array}{lll}
\text { n } & \vdots \\
8 & u_{0} & \vdots
\end{array}
$$

$$
\cdots \quad \omega
$$

$$
\begin{aligned}
& \text { we } \\
& \text { form } \\
& \text { in }
\end{aligned}
$$

$$
\begin{aligned}
& \text { g }
\end{aligned}
$$

$$
\begin{aligned}
& t_{3} \quad \psi_{0}
\end{aligned}
$$

$$
\begin{array}{lllll}
x_{x} & t_{0} & \overline{0} & n & 0 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0
\end{array}
$$

urions
is
a
in

$$
\frac{?}{2}
$$

$$
y
$$

¿ s.

$$
0
$$

4

手

解兵里号 号

$\because \underset{0}{2}$

\％

$$
\begin{aligned}
& \text { Deorem: The collection of nounal numbers in }[0,1] \\
& \text { has full Le besque measure. } \\
& \text { Proof: Let } Z_{b} \text { be all } s \in \sum_{b}^{+} \text {That do not } \\
& \text { ene in } 0^{\infty} \text { or }(b-1)^{\infty} \text {. Like in he case of } b=2 \text { wedid } \\
& \varphi(s)=\sum_{i=0}^{\infty} \frac{s_{i}}{b^{n+1}} \varphi_{i}=Z_{b} \rightarrow X_{b} \\
& \text { gives an iso movphism between the }\left(\frac{1}{b}, \ldots, \frac{1}{0}\right) \\
& \text { Bernoulli measure } V \text { on } \sum_{b}^{+} \text {and Lebesque measure } \\
& \mu \text { on }[0,1] \text {. By definition } \varphi^{\prime}(x) \text { is } \\
& \text { The base } b \text { expansion of } x .
\end{aligned}
$$

$$
\text { Fix a block } \begin{aligned}
& B=a_{0} a_{1} \ldots a_{n-1}, \text { using the isomorigi } \\
y(x, B, k) & =\text { \# of occurrences } d B \text { in } s_{0} s_{1} \ldots s_{k} \\
& =\text { \#occurreues of } B \text { is } \varphi^{-1}(x) \text { up to } k \\
& \left.=\nmid \text { times } \sigma^{i} / \bar{\varphi}^{-1}(x)\right) \text { is in the } \\
& {\left[a_{0} a_{2} \ldots q_{n-1}\right] \text { for } }
\end{aligned}
$$

\curvearrowright

\varnothing

$\stackrel{N}{V}$

