

$$
\underline{4}
$$

is an

$$
\stackrel{y}{\gamma}
$$

$$
\begin{aligned}
& \text { 希 } \\
& \vec{~} \\
& \vec{j}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } \phi \in A \\
& \text { (2) } A, B \in A \Rightarrow A \wedge B \in A \\
& \text { (3) } A \in A \Rightarrow D-A \in A .
\end{aligned}
$$

Theorem 1 Each semi alges ra generates a unique alyebia
Proor $A=$ all substs that can be written as
$E=\bigcup_{L=1}^{n} A_{L}$ wim $A_{L} \in S$, pairwite disjonit

-311∞

$$
\begin{aligned}
& \text { Algebra A since all subscts of } \\
& \text { t makes seuce to detine } \\
& \text { B(A) as the smallestr-algebra }
\end{aligned}
$$

Teovem 3: Let A be an algebra and $I: A \rightarrow \mathbb{R}^{\prime}$
is countable additive and $I(\bar{X})=1 \Rightarrow$ there is
a unique probability measure on $(\mathbb{X}, \mathcal{B}(A))$ that
extends I.

σ

$\stackrel{4}{4}$
$\stackrel{4}{4}$
$\stackrel{2}{4}$
$\stackrel{4}{4}$

$\begin{array}{ll}2 & \overparen{3} \\ 0 & \\ 5 & 5 \\ 0 & 5\end{array}$ $\underset{1}{\text { l }} \approx$

$$
\begin{aligned}
& \star
\end{aligned}
$$

Also note
$\left.\mu \mid f^{-1}(A)\right)=$
\uparrow
,

\pm

$\stackrel{4}{4}=\frac{4}{4}$

