Although the step function \(f(x) = 0 \) for \(x \leq 0 \), \(f(x) = 1 \) for \(x > 0 \)

has \(f(0) = 0 \), you don't want to construct decision lines or sets where the input to \(f \)

is exactly zero. This would be unstable to small perturbations and thus not robust.

So in the example on pages 7 and 8 of Lecture 27, the line \(x_1 - x_2 = 0 \) does yield \(f(\mathbf{0}) = 0 \)
correctly, we don't want to use it.

Rather, the decision line should avoid the data input points

\(x_1 - x_2 + y_2 = 0 \)
This instability is one reason the ramp or sigmoid are preferred in general. They are continuous so small changes in input yield small changes in output, rather than a big jump like \(\Delta s \) has at zero.
We now see what a single neuron with ReLU step activation does

\[x_1 \xrightarrow{w_1} (\circ) \rightarrow \text{output} = \begin{cases} 0 & w_1 x_1 + w_2 x_2 + b \leq 0 \\ 1 & w_1 x_1 + w_2 x_2 + b > 0 \end{cases} \]

So \(F(x) = \sum_s (w^T x + b) = \sum_s (w_1 x_1 + w_2 x_2 + b) \)

Now \(0 = w_1 x_1 + w_2 x_2 + b \) is a line in the \((x_1, x_2)\)-plane.

It divides the plane into two halves:

- One where \(F(x) = 0 \)
- One where \(F(x) = 1 \)
Example: Find the weights and bias of a single neuron with a step-activation that classifies the points

\((-1,-1), (-1,0), (0,1)\) → have value 1 (yes)

\((0,0), (1,0), (1,1)\) → have value 0 (no)
Solve Plot Then in the plane

\[\text{value} = 1 \]

\[x \]

\[\times \]

\[x \]

\[\times \]

\[\circ \text{ value} = 0 \]

We find a "decision line" that divides the

one such line is $x_1 - x_2 + \frac{1}{2} = 0$

but $F(x_1, x_2) = \sqrt{(x_1 - x_2 + \frac{1}{2})}$

yields $F(0, 0) = \sqrt{(\frac{1}{2})} = 1$

The wrong value so we use the description $-x_1 + x_2 - \frac{1}{2} = 0$

So the soln is $w_1 = -1, w_2 = 1, b = -\frac{1}{2}$