

\mathscr{N}

$$
\text { row of } F \text { is }
$$

$$
\underset{x}{\&}-\sqrt{2}+\sqrt{2}
$$

$$
\begin{array}{cc}
x & 11 \tag{11}\\
e^{y} & 10
\end{array}
$$

\because

$$
\begin{aligned}
& \sqrt{-1+1,2} \\
& -\frac{1}{1} \\
& -\cdots-\stackrel{\rightarrow}{1}
\end{aligned}
$$

$\begin{array}{llll}n & m & m & m \\ 0 & m_{3} & \dot{n}_{3} & n_{3}\end{array}$

$$
\begin{aligned}
& \begin{array}{llll}
n \\
\dot{n} \\
n & 3 & j & 3 \\
n & n & n \\
n
\end{array} \\
& -\operatorname{cin}_{2}^{2} 7,7 \\
& \dot{0}_{3} \dot{x}_{3} \vec{i}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{1} \\
& -\rightarrow-\frac{1}{1} \\
& -\frac{1}{1} \rightarrow-1
\end{aligned}
$$

11

1 θ
\equiv

${ }_{x}+\underline{q}$

| 0 |
| :--- | :--- |

$<x$
\mathcal{O}

$<x$
F^{-1}
11
\times

\times
\times
$1+$
11
$<x$

since

$<x^{x}$
7
2
\vdots
0
11

\checkmark
$\stackrel{11}{4} \quad x^{3}$
$\stackrel{\rightharpoonup}{i}$

A

