Difference d ascent sequences

Bruce E. Sagan
Michigan State University
Based on joint work with Mark Dukes
Let $\alpha=a_{1} a_{2} \ldots a_{n}$ be a sequence of nonnegative integers. The ascent set of $\alpha, \operatorname{Asc} \alpha$, consists of all indices k where $a_{k+1}>a_{k}$. An ascent sequence is α where the growth of the a_{k} is bounded by the elements of $\operatorname{Asc} \alpha$. These sequences were introduced by Bousquet-Mélou, Claesson, Dukes and Kitaev and have many wonderful properties. In particular, they are in bijection with unlabeled $(2+2)$-free posets, permutations avoiding a particular bivincular pattern, certain upper-triangular nonnegative integer matrices, and a class of matchings. A weak ascent of α is an index k with $a_{k+1} \geq a_{k}$ and weak ascent sequences are defined analogously to ascent sequences. These were studied by Bényi, Claesson and Dukes and shown to have similar equinumerous sets. Given a nonnegative integer d, we define a difference d ascent to be an index k such that $a_{k+1}>a_{k}-d$. We study the properties of the corresponding d-ascent sequences, showing that some of the maps from the weak case can be extended to bijections for general d while the extensions of others continue to be injective (but not surjective).

