Every last time

\[\Sigma^n : S^n \to \mathbb{R}^{n+1} - S^n \]

inclusion

Induces an isomorphism on the fundamental group.

DEF: \(r \) : \(X \to A \) is a retraction if

\[r | A = \text{id}_A \quad \text{or} \quad r | \partial A = \text{id}_A \]

\[r \circ i_A = \text{id}_A \]
DEF: \(A \subseteq X \) is a deformation retract if \(\text{id}_X \) is homotopic to a map \(\varphi \) that collapses \(X \) into \(A \) and each \(p \) in \(A \) is fixed during homotopy.

More precisely, \(\exists \) \(\text{cont} \ H : X \times I \rightarrow X \) such that

1. \(H(x,0) = x \)
2. \(H(x,1) \in A \)
3. \(H(p,t) = p \) \(\forall p \in A \)

\(H \) is called a deformation retraction.
Let \(r(x) = H(x,t) \) then
\[
\begin{align*}
\text{r: } & X \to A \text{ by (b)} \\
& \forall x \in X \text{ by (c)} \\
& a \cdot r(a) = a \quad \forall a \in A
\end{align*}
\]
So \(r \) is a retract \(X \to A \).

Hence \(\text{id}_X = 1_A \circ r \).

Note: Some books call this a
strong deformation retract

Example: \(S^n \) and \(\mathbb{R}^{n+1} \setminus \{0\} \)
\[
S^n \subset \mathbb{R}^{n+1} \setminus \{0\}
\]
Theorem: If A is a def retract of X, pick $a_0 \in A \Rightarrow L_A: A \rightarrow X$

$(L_A)_*: \pi_A(A, a_0) \rightarrow \pi_1(X, a_0)$

is an isomorphism.

Proof: $L_A \circ r = \text{id}_A$ by retract

$r \circ L_A = \text{id}_A$ by retract

where r is defined as above.

These homotopies fix $a_0 \in A$ which

\Rightarrow hit with "x" on $\pi_1(X, a_0)$.
\[X = \mathbb{R}^n \quad A = \mathbb{D}^3 \]

\[\Rightarrow A \text{ is a def retract of } X \]

So \(\pi_1 (X, \overline{0}) = \mathbb{Z} \mathbb{Z} \)

\[X = \mathbb{R}^2 - \mathbb{Z} \{(1,0), (-1,0)\} \]

Deformation retract isn't an equivalence relation. \(\pi_1 (X) = \text{free group on 2 symbols} \).
DEF: A homotopy is an equivalence or homotopy type if $\pi_1 = \pi_0 = \emptyset$. In this case, X and Y are said to be homotopic.

R.K.: Homotopy is an equivalence relation on topological spaces.
\[\text{If } x = 9 \Rightarrow \text{ Then } \exists (x) \leq 11, (9) \]

\[(3) \]

\[\text{If } n \in \mathbb{R} \quad \text{Then} \quad \exists \forall \phi \in \mathbb{R} \quad 0 \leq 3 \phi = \text{?} \]

\[\text{If } 303 = \text{?} \quad \text{Is a test vector} \]

\[\text{If } n \in \mathbb{R} \quad \text{Then} \quad \exists \forall \text{ vector } \]

\[\text{If } A \in \text{ vector} \Rightarrow A = \]
Converse False

\[x = S^2 \quad y = R \]

\[\Pi_1 (x) \equiv \sum_{e \in \text{even}} \frac{\Pi_1 (\text{1R})}{2} \]

but \(S^2 \neq \text{IR} \).
Lemma: \(h, k : X \to Y \), continuous

\[
h(x_0) = y_0 \\
k(x_0) = y_1
\]

\[
P_1(X, x_0) \xrightarrow{h \ast k} P_1(y, y_0) \downarrow \chi
\]

\[
\chi
\]

\[
\tau
\]

\[
P_1(y, y_1) \xrightarrow{k \ast k}
\]

Where \(H : \mathbb{R}^2 \to \mathbb{R}^2 \) and \(d(x, y) = \|x - y\| \).
Proof! If \(f \) is a loop in \(X \) based at \(x_0 \) we need

\[k \cdot [f] = \hat{x} \circ h_k \cdot [f] \]

or

\[[k \circ f] = \sum_{\alpha} [\hat{x}] \cdot [h_\circ f] \cdot [\alpha] \]

or

\[\sum_{\alpha} [\alpha] \cdot [k \circ f] = \sum_{\alpha} [h_\circ f] \cdot [\alpha] \]

which we prove.
Define two loops in $\mathbb{S}^1 \times T$ as:

$C(f)$

$F(f) = \{ (f(x), y) \}$

For $f_0, f_1 \in \pi_1$, we have

$H_0 f_0 = \text{hof}_f f_0$ \Rightarrow $f_0 \circ x = x$

Pen
Also define \(F : I \times I \to X \times I \)

by \(F(x, t) = (f(x),\pm t) \)

and paths in \(I \times I \) as

\[
\begin{align*}
\beta_0(s) &= (s,0) & \beta_1(1s) &= (s,1) \\
\delta_0(\pm) &= (0,\pm) & \delta_1(\pm) &= (1,\pm)
\end{align*}
\]

\[
\begin{align*}
F \circ \beta_0 &= \gamma_0 \\
F \circ \delta_0 &= F_0 \gamma_1 = C \\
F \circ \beta_1 &= \gamma_1
\end{align*}
\]
Since I × I is convex

\[\beta_0 \star \beta, \quad \frac{\cdot}{p} \beta_0 \star \beta, \quad \text{in} \quad I \times I, \]

by a homotopy we call \[\beta G. \]

Then, \(F \circ G : f_0 \times c \cong c \circ f_1 \)

So \(H \circ F \circ G \) is a path homotopy between

\[H (f_0 \times c) = (H \circ f_0) \star (H \circ c) \]

\[= (h \circ f) \star \alpha. \]

\[H (c \circ f_1) = (H \circ c) \star (H \circ f_1) \]

\[= \alpha \star \beta (k \circ f). \]
Cor: \ h, k : X \to Y \text{ cont, homotopic then }\n
\implies h_k \text{ is injective, surjective, trivial }\n\implies K_k \text{ has the same property.}\n
Cor: \ h' : X \to Y \text{ cont, null homotopic }\n\implies h'_k \text{ is the trivial homomorphism.}\n
\exists m \quad \text{f : X \to Y is a homotopy equivalence}\n
\Rightarrow f(x_0) = y_0 \implies f_k^* : \pi_1(X, x_0) \to \pi_1(Y, y_0) \text{ is an isomorphism.}