A little algebra - generators and relations

DEF: Given a set \(X \), the free group on \(X \), \(\mathbb{F}(X) \), is the collection of all formal finite words in \(x \) and \(x^{-1} \) canceling \(x \cdot x^{-1} \) to be empty word. \(\emptyset \) the empty word is the identity. \(\mathbb{W} = x_1 x_2^{-1} x_3 \ldots \)

\(w_1 x_2 x_3^{-1} w_2 = w_1 w_2 \)

DEF The isomorphism class of \(\mathbb{F}(X) \) just depends on \(\text{card}(X) \).
So $F_n = \text{free group on } n\text{-symbols } \ 0 < n < \infty$

$F_2 = F(\{a, b\})$ all words

$q \tilde{b} \tilde{b} b \tilde{b} q \tilde{b} a q q$

Lemma. Any group G is the homomorphic image of a free group on $\tilde{G} = F/N$ for F free and $N \triangleleft F$.

N normal subgroup.
Proof: Let $F = F(G)$ set underlying G.

and $\Psi: F \rightarrow G$ via

$\Psi(g_1, g_2, \ldots, g_n) = g_1 \cdot g_2 \cdot \ldots \cdot g_n$

Obviously a homomorphism

So $N = \ker(\Psi) \Rightarrow$

$G \cong F/N$
$G = \mathbb{Z}^2 \quad a = (1,0) \\
\quad b = (0,1)$

\[
\psi : F(a,b) \to \mathbb{Z}^2 \\
\psi(aa bab^2) \to 3a + b + b + a - b \\
\psi(a b a^{-1} b^{-1}) = a + b - a - b = 0 \\
\]

So $ab a^{-1} b^{-1} \in \ker(\psi) = N.$

In fact $\ker(\psi) = \text{Smallest normal subgroup of } F\mathbb{Z} \text{ containing } ab a^{-1} b^{-1} \hspace{1cm} = \text{Commutator subgroup.}$
DEF G is called \underline{finitely generated} if it is generated by a finite set or equivalently, \(G \cong \mathbb{F}_n / N \) for \(n < \infty \) \(N \triangleleft \mathbb{F}_n \) (\(\mathbb{F}_n = F(\text{generators}) \))

G is \underline{finitely presented} if

\[G \cong \mathbb{F}_n / N \quad n < \infty \]

\(N \triangleleft \mathbb{F}_n \) and \(N \) is the smallest normal group containing some set \(r_1, \ldots, r_k \) called the \underline{relations}.
page left blank on purpose -- scanning error
In this case G is written

$$G = \langle g_1, \ldots, g_n | r_1, \ldots, r_k \rangle$$

or semicolon, colon ...

Examples:

$0 \mathbb{Z}^2 = \langle a, b | a b a^{-1} b^{-1} \rangle$

\mathbb{Z}^2 is generated by a, b and

$ab a^{-1} b^{-1} = e$ or $ab = ba$
(2) \[\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z} = \langle a | a^n \rangle \]

(3) \[D_n = \text{dihedral group of order } n \]
= Symmetries of the planar regular polygon with n-sides

\[D_n = \langle r, s | r^n = 1, s^2, rs = sr^{-1} \rangle \]

rotation in a mirror is rotation in opposite direction.
When are two finite presentations yield isomorphic groups?

Undecidable in general
$X = U \cup V$ open sets, $U \cap V$ path connected, nonempty and $U, V, U \cap V$ all have finitely presented fundamental groups, and $x_0 \in U \cap V$

$\pi_1 \left(U, x_0 \right) = \langle a_1, \ldots, a_n | a, \ldots, a_m \rangle$

$\pi_1 \left(V, x_0 \right) = \langle b_1, \ldots, b_k | b, \ldots, b_e \rangle$

$\pi_1 \left(U \cap V, x_0 \right) = \langle c_1, \ldots, c_j | c, \ldots, c_\omega \rangle$

$\Rightarrow \pi_1 \left(\Sigma, x_0 \right) = \langle a_1, \ldots, a_n, b_1, \ldots, b_k |\right.

$\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_e (Lu)_k c_1 (Lu)_k^{-1}, \ldots, (Lu)_k c_j (Lu)_k^{-1} \rangle$
So it has all the generators and relations of the pieces with new relations coming from where \(U \) and \(V \) join.

or \((elu)_r c_i = (lv)_r c_i\)
\[\Pi_{1}(U, x_0) = \langle a \rangle \]

\[\Pi_{1}(V, x_0) = \langle b \rangle \]

\[\Pi_{1}(U \cup V, x_0) = \langle \rangle = \langle a | e \rangle \]

\[\Pi_{1}(\Sigma, x_0) = \langle a, b | (L_A)_k (e) (L_A)_k (e) \rangle \]

\[= \langle a, b | e \rangle = \langle a, b \rangle \]

\[= F_2 \]
\[W_n = \text{wedge of } n\text{-circles} \quad n \leq \infty \]

Then \[\pi_1 (W_n) \cong F_n \] by induction.
Infinite (Hawaiian) Earring

\[W_n = \bigcup_{i=1}^{n} \{ x \in \mathbb{R}^2 : \|x - (i, 0)\| < \frac{1}{n} \} \]

What is \(T_i (\mathbb{F})^2 \)?
Let F_n be the loop determined by W_n.

Is Π_1 generated by ΣF_n?

You are only allowed finite words.

Here's a loop g

Continuous by Σg is not a finite product of ΣF_n.
If again
\[\langle a \mid b^{-1} e b \rangle \Rightarrow 0 \]

\[0 \]