Given a metric it yields a base

\[\exists B_x(r): x \in X, r > 0 \exists \]

Last time when two metrics yield the same topology.

Discrete metric

\[
d(x, y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}
\]

⇒ the discrete topology every pt is open
Example for \(\mathbb{R}^{2+} \)

What metric should we try to generalize from \(\mathbb{R}^n \)?

\[y, x \in \mathbb{R}^{2+} \]

\[d(x, y) = \left(\sum_{i=0}^{\infty} (x_i - y_i)^2 \right)^{1/2} \]

Could be infinite

\[\sum \text{ works on } \ell^2(\mathbb{R}) = \{ x \in \mathbb{R}^{2+} : \sum_{i=1}^{\infty} |x_i|^2 < \infty \} \]

or \(d(x, y) = \sup_{i \geq 1} |x_i - y_i| \), \(i \in \mathbb{Z}^{+} \)

also could be infinite
Use the bounded metric on \mathbb{R}.

\[I(x, y) = \begin{cases} \sum d(x, y) & \text{when } d(x, y) \leq 1 \\ \geq 1 & \text{when } d(x, y) \geq 1 \end{cases} \]

generates the same topology as d

\[d(x, y) = |x - y| \]

Two metrics on \mathbb{R}^2^+

\[\rho(x, y) = \sup \sum \overline{d}(x_i, y_{i+1}), \quad i \in \mathbb{Z}^+ \]

\[D(x, y) = \sup \sum \frac{\overline{d}(x_i, y_{i+1})}{2^i}, \quad i \in \mathbb{Z}^+ \]
DEF: The topology induced by ρ is called the uniform topology.

Theorem:
(a) ρ and D are metrics
(b) D induces the product topology on \mathbb{R}^2
(c) box \neq uniform \neq product.

R.K.: So ρ and D induce different topologies on \mathbb{R}^2.
Proof (b)

Two steps:

(1) Product is D-topology.

(2) D-topology is product in product colimit.

Claim $x \in U$ is obvious.

$V = \{ x_1 \leq x_1 + \epsilon, x_2 \leq x_2 + \epsilon, \ldots, x_n \leq x_n + \epsilon \}$
In general,
\[D(x, y) \leq \max \left(\frac{\overline{d}(x_i, y_i)}{4}, \frac{\overline{d}(x_n, y_n)}{n} \right) \]

Since for the first \(N \)-terms by def

for large \(n > N \), \(p \leq 1 \) \(\forall i \)

so \(\overline{d}(x_n, y_n) \leq \frac{1}{n} < \frac{1}{n} \)

Now if \(y \in V \Rightarrow D(x, y) < 3 \)

since \(\frac{\overline{d}(x_n, y_n)}{n} < \frac{3}{n} \) for \(n = \frac{1}{n}, n \)

and \(\frac{1}{n} < 3 \).
2) $D_{top} = \text{product.}$

Let U be a base element in product topology or

$U = \prod_{i \in \mathbb{Z}} U_i$ when $U_i \neq \emptyset$

only for $i = d_1, \ldots, d_n$. The task

is given $x \in U$ find $B_{\epsilon}(x) \subseteq U$

(B_{ϵ} in D-metric).

We can find ε_i with $\varepsilon_i \leq \frac{1}{2}$

$(x_{\Delta+\varepsilon}, x_{\Delta+\varepsilon}) \subseteq U_i$ if $i \neq d_1, \ldots, d_n$.
and \(\exists n \in \mathbb{N} \) so \(x < 1 \) ?

\[x - y \leq \frac{7}{3} \]

So \(x \geq \frac{7}{3} \) and \(z > \frac{7}{3} \).

\[\frac{7}{3} \geq z \]

However, for \(l = \frac{7}{3} \), \(\frac{7}{3} = \frac{7}{3} \).

So by the condition \(3 > \frac{7}{3} \).

So let \(x \geq \frac{7}{3} \) min \(n \).
Proper containment is HW.

Unit is product. Pick Π_U base.

Element in product topology so

U_i open in \mathbb{R} and $U_i \neq \mathbb{R}$ only.

For $x, y \in \mathbb{R}_n$. For each $i = x_i, y_i$.

Choose ε so that $(x_i - \varepsilon, x_i + \varepsilon) \subseteq U_i$.

and let $\varepsilon = \min\{\varepsilon, \varepsilon, \varepsilon\}.$
I.e. \(\exists p(x, z) \neq 0 \)

\[\implies \exists (x, z) : \forall x. \]

So \(z \in \pi \cup \Lambda \)

So \(B^\theta(x) \subseteq \pi \cup \Lambda \)

ball in \(\rho \)-metric
box is unit

Given $B^p_\frac{1}{2} (x)$ then

$$\prod_{l=1}^n (x_l - \frac{1}{2}\varepsilon, x_l + \frac{1}{2}\varepsilon)$$
is a box inside $B^p_\frac{1}{2} (x)$.

Many nice properties that are just true for metric spaces.

Continuity

Theorem:

If $f: (X, d_X) \to (Y, d_Y)$ is continuous so that $d_Y(f(x), f(y)) \leq d_X(x, y)$ for all $x, y \in X$, then f is uniformly continuous on X.

For any $\varepsilon > 0$, let $\delta = \varepsilon$. Then for all $x, y \in X$ with $d_X(x, y) < \delta$, we have $d_Y(f(x), f(y)) \leq \varepsilon$, so f is uniformly continuous on X.

Proud to be here. One way.
Two other results proved next time.

1) \(f: (X,d_X) \rightarrow (Y,d_Y) \) is continuous

\[\iff \left(x_n \rightarrow x \text{ in } X \implies f(x_n) \rightarrow f(x) \text{ in } Y \right) \]

2) \((X,d) \) metric, \(A \subseteq X \)

\(x \in \overline{A} \iff \exists \; \exists n \in \mathbb{N} \quad x_n \in A \quad x_n \rightarrow x \)