DEF: X is compact if every open cover has a finite subcover.

Example: $X = \{0, 1\}$ \(\cup_{x \in \mathbb{R}} B_{\epsilon}(x) \) open

\(\cap_{x \in \mathbb{R}} X = U \cap X \)

\(\Rightarrow \exists \bigcup_{n=0}^{\infty} : n = 0, 1, 2, \ldots \) ceiling
Using Ambient not Relative open sets.

Lemma: \(y \subseteq \overline{X} \)

\(y \) is compact \(\iff \) every open cover of \(y \) by sets open in \(X \) has a finite subcollection covering \(y \).

Proof: Sets opening any \(U \cap y \) for \(U \) open in \(X \).
\[y = \sum_{0,1} \in \mathbb{R} \]

\[V_x = B_{\varepsilon}(x) \text{ open in } \mathbb{R} \]

\[V V_x \supseteq \sum_{0,1} \]

\[\Rightarrow \exists U_n \subseteq : n = 0, 1, \ldots \text{ covers.} \]
Theorem: Closed subspaces of cpt spaces are compact.

Proof: $y \subset \bar{x}$

A is a cover of y by sets open in X.

Let $B = A \cup \exists x-y \bar{y}$ is an open cover of X since Y is closed.

X is compact $\Rightarrow B$ has a finite subcover.
Create a finite subcover of \(y \) by throwing out \(X - y \) if it is in the finite subcover of \(B \).

In HD spaces, open subsets are closed.

Proof uses a Prelim Lemma.
\[\text{Proof: } A \neq \emptyset, E \text{ open} \]
\[\emptyset \neq \bigcap_{y \in E} \bigcup_{x \in A} [x, y] \]
\[x_0 \neq y \Rightarrow \exists \text{ open } U \]
\[x_0 \neq y \Rightarrow U \nsubseteq E \cap I \]
 Suppose V_y covers y.

 Let $V = V_{y_1} \cap V_{y_2} \cap \ldots \cap V_{y_n}$.

 Then $V \in \mathcal{N}_y$. Is open.

 So $y \in \mathcal{N}_y$, i.e., $y \notin U$. So $x_0 \in U$, i.e., $x_0 \in U \cup y$.
Proof that $\text{cpt in } H \implies \text{closed.}$

For $x_0 \not\in Y \ (Y \text{ cpt in } H \TEX X),$

$\implies \text{prelim lemma } E \cup x_0$

$x_0 \in U \cup \forall Y = \emptyset$

$\implies X - Y \text{ is open. }$ so

$Y \text{ is, closed. }$
Thin: Cost image is compact space is compact.
(last line)
If \(f: X \to Y \) is a bijection, continuous \(f \) is a homeomorphism:

\[X \text{ is open} \iff Y \text{ is open} \iff f \text{ is a homeomorphism} \]

or \(f^{-1} \) is continuous.

Proof: \(f^{-1} \) is continuous \(\iff (f^{-1})^{-1} \) is continuous.

Closed sets are closed \(\iff f(C) = \text{closed} \).

Thus \(C \subseteq X \Rightarrow C \text{ is closed} \Rightarrow f(C) \text{ is closed.} \)
Example

\[f: \Sigma_0, 2\pi \rightarrow S^1 \]

\[f(\pm) = (\cos t, \sin t) \]

Is continuous, bijective?

Is it a homeomorphism?

No, \(\Sigma_0, 2\pi \) is not compact.
Can S^0, $2\pi i$ be homeomorphic to S^1?

$I \to I$

$I - 3 \pi i \to S^1 - \text{pt.}$

not conn \quad \text{not homeomorphic}

\[
\begin{align*}
A \to B \quad \text{conn} \\
A \text{ conn } \iff B \text{ conn}
\end{align*}
\]

A connected.
Is \mathbb{R} homeomorphic to \mathbb{R}^2?

No

$\mathbb{R} - 3$ is disconnect.

\mathbb{R}^2 is path connected.

\Rightarrow connected.

Products of compact spaces are compact.

In the product topology, Tychonoff theorem.