Using last time.

\(C(X, (Y, d)) \) with \(X \) compact, \((Y, d)\) complete.

is complete with "Sup metric".

\[d(f, g) = \sup \left\{ d(f(x), g(x)) : x \in X \right\} \]

Example: Space Filling Curve. \(\Gamma = \Sigma 0,1 \)

\(\alpha : I \rightarrow I^2 \)

Continuous and onto.

Not injective.
Idea: Define a sequence

\[f_n \in C(I, I^2) \]

such that \(f_n \) converges in some manner to \(f \) from previous proofs.

Then \(f_n \) is Cauchy.

Thus \(f_n \to f \) since \(C(I, I^2) \) is complete and \(f \) is the space filling curve.
Special Features of Complete Metric Spaces.

Theorem \((\mathcal{X}, d)\) is compact \(\iff\) complete and totally bounded.

DEF. \((\mathcal{X}, d)\) is totally bounded if \(\forall \varepsilon > 0, \exists\) finite cover of \(\mathcal{X}\) by \(\varepsilon\)-balls.
(1) Totally Bounded \[\Rightarrow \] Bounded.

Proof: If \(X \) is covered by \(2 \) \(-\) balls then

\[d_{1n}(X) < 2N \]

(2) Converse is false.

\[d_{1n}(IR) = 1 \]

\[d_{1n}(\mathbb{R}) = \infty \]

\[d_{1n}(\mathbb{Q}) \]

\[P \]

\[P \]

\[P \]

Is bounded but not totally bounded.
\[\lim_{n \to \infty} c_p^t = \text{complete } \pm 1, b. \]

\[
(\Rightarrow) \quad \exists x_3 \in X \text{ is Cauchy (and infinite)} \Rightarrow \text{ by compactness (sequence)}
\]

\[\exists x_{n3} \subseteq X \text{ with } \exists \]

\[\exists x_{n3} \text{ convergent by Lemma } \exists x_{n3} \text{ conv. } \]

\[\exists x_{n3} \text{ conv. then by Lemma } \exists x_{n3} \text{ conv. } \]

\[\text{So } X \text{ is complete. } \]

Now for \(\pm 1, b \), \(\exists B_\varepsilon (x) \) is an open cover of \(X \Rightarrow \) finite subcover by compactness \(\Rightarrow \pm 1, b. \)
(\rightarrow) Assume \(X \) is complete, i.e., we show \(X \) is seq. compact.

Given \(\exists (x_n) \) (not a finite set)

\[\exists \{x_{n_k}\} \text{ is a subsequence of } (x_n) \]

Claim: \(\exists (x_{n_k}) \) Cauchy and thus \(\exists x \in X \) Cauchy and thus \(\exists x_{n_\infty} \) convergent. \(\Rightarrow X \) is seq. compact.

\(x_{n_\infty} \)
Proof of claim

Cover X by finitely many \mathcal{B}-balls. One of these, say $B_{\frac{1}{2}}(q_1)$ contains infinitely many points of \mathcal{E}^n. Let

$$J_1 = \{ n \mid x_n \in B_{\frac{1}{2}}(q_1) \}.$$

Now balls of radius $\frac{1}{2}$, $\mathcal{B}_{\frac{1}{4}}(q_2)$ contains ∞ many pts of \mathcal{E}^n. Let

$$J_2 = \{ n \mid x_n \in B_{\frac{1}{4}}(q_2) \}.$$

Balls of radius $\frac{1}{2^{k+1}}$, $\mathcal{B}_{\frac{1}{2^{k+1}}}(q_2)$ contains ∞ many J_k: $n \in J_k$ $x_n \in B_{\frac{1}{2^{k+1}}}(q_2)$.

$$J_3 = \{ n \mid x_n \in B_{\frac{1}{2^{k+1}}}(q_2) \}.$$
Now \(J_1 \leq J_2 \leq J_3 \leq \cdots \).

Each is infinite.

Pick \(n_1 \in J_1 \), \(n_2 > n_1 \), \(n_2 \in J_2 \), \(n_k \in J_k \), \(n_{k+1} > n_k \).

Then \(\forall i, j \geq k \quad x_{n_i} x_{n_j} \in B_{\frac{1}{k}}(a_k) \)

\(\Rightarrow \quad d(x_{n_i}, x_{n_j}) < \frac{1}{k} \)

\(\Rightarrow \quad \exists K \geq \frac{1}{k} \) is Cauchy.
DEF: \(f^* : (X,d) \to (X,d) \) self map

\[f^* (x,d) \]

is a contraction if \(0 < k < 1 \)

So that \(d(f(x), f(y)) \leq kd(x,y) \)

Iteration of functions

\[f^2(x) = f(f(x)) = f\circ f(x) \]

\(n \geq 1 \) iterates

\[f^n(x) = f(f(\ldots f(x)\ldots)) = f_0 \circ f \circ \ldots \circ f(x) \]
Contraction Mapping Theorem

\[f: (\mathbb{R}, d) \rightarrow (\mathbb{R}, d) \text{ is a contraction and } (\mathbb{R}, d) \text{ is complete } \Rightarrow \]

1. \(f \) has a fixed point \(f(x_0) = x_0 \).
2. \(x_0 \) is the unique fixed point.
3. \(\forall x \in \mathbb{R}, \ f^n(x) \rightarrow x_0 \).

Proof

Prelim Lemma.

\[\forall x, \ d(f^n(x), f^{n+1}(x)) \leq k^n d(x, f(x)) \]
Proof of Prelm by Induction:

\[n = 1: d(f(x), f^2(x)) \]
\[= d(f(f(x)), f^3(x)) \]
\[\leq k d(x, f(x)) \]

Assume true for \(n \).

\[d(f^{n+1}(x), f^{n+2}(x)) \]
\[= d(f(f^n(x)), f(f^{n+1}(x))) \]
\[\leq k d(f^n(x), f^{n+1}(x)) \]
\[\leq k^{n+1} d(x, f(x)) \text{ by inductive hyp.} \]