DEF: X is a Baire space if for all $\alpha \in \mathbb{N}$, there is a countable set S of closed sets with empty interior such that $\bigcup_{n=1}^{\alpha} S_n$ has empty interior.

Example: We show \mathbb{R} is Baire.

Alternatively, X is Baire if for every countable set S of open and dense subsets of X, there is a countable subset $\bigcup_{n=1}^{\alpha} S_n$ of X such that $\bigcup_{n=1}^{\alpha} S_n$ is dense.
Baire Category Theorem

1. X compact Hausdorff \Rightarrow Baire
2. X complete metric \Rightarrow Baire

Prelim Facts on Regularity

Def: (X, τ) is regular if for all points x and closed sets B in X:

- There exists neighborhoods U of x and V of B with $U \cap V = \emptyset$.

Facts:
- Compact Hausdorff \Rightarrow Regular
- Metric \Rightarrow Regular
Lemma: \(X \) is regular \(\iff \)

given \(x \) and a nbd \(U \) of \(x \)
\[\Rightarrow \exists \text{ open } V \subseteq U, \overline{\overline{V}} \subseteq U \]

\[\Rightarrow \exists \text{ disjoint } T \text{ and } W \]

Let \(B = X - U \text{ closed }, x \not\in B \)

Now \(V \subseteq W \subseteq \text{ closed set } \)
\[\Rightarrow \overline{V} \subseteq W \subseteq B^c \]
\[\Rightarrow \overline{V} \cap B = \emptyset \Rightarrow \overline{V} \subseteq U \]
Given \(A \times X \) and closed set \(B \)

with \(A \times B \)

then \(x \in A \times L \) by \(x \in X \)

hypotheses \(x \in A \times L \) are the needed

if \(x \in X \times L \) open set

\(\subseteq L \)
Proof of BCT

Start with \(\exists A_n \)

Closed, \(\text{Int}(A_n) = \emptyset \). We show that

given any nonempty open \(U_0 \), \(\exists x \in U_0 \)

with \(x \notin V \bigcup A_n \) (\(x \) is not in any of

the \(A_n \)) \(\Rightarrow \text{Int}(V \bigcup A_n) = \emptyset \).

By hypothesis, \(A_1 \) does not contain \(U_0 \)

\(\Rightarrow \exists y \in U_0 - A_1 \) is open

Use regular lemma. \(\exists U_1 \) and \(\exists U_1 \)

of \(y \in \overline{U_1} \cap A_1 \) = \emptyset

\(U_1 \subseteq U_0 \)
\[\text{Claim: } \forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } x < y < x + 1 \]

In the next case, choose \(y_n \) as follows:

\[y_n = \frac{1}{n} \]

This point and \(y_n \) are not in \(A^n \) and are on one set which cannot find a point in \(L_n-1 \) not in An.
Proof of the claim

(1) Compact \mathcal{H}: $\{U_n\}$ are a nested family of closed (so compact), nonempty sets. So by finite intersection, result

$$\bigcap_{n=1}^{\infty} U_n \neq \emptyset$$

(2) Complete metric case

Lemma $C_1 \supset C_2 \supset \ldots$ nested, nonempty in a complete metric space

and $\operatorname{diam}(C_n) \to 0 \Rightarrow \bigcap_{n=1}^{\infty} C_n \neq \emptyset$
Proof: Pick $x_n \in C_n$

\Rightarrow Since diam $(C_n) \rightarrow 0$

\Rightarrow The tail of $\exists x_n \exists$ is in successive balls $\forall \varepsilon > 0$ and given $\varepsilon > 0$

Pick N so that $n \geq N \Rightarrow \text{diam} (C_n) < \varepsilon$

$\Rightarrow \exists x_n, x_{n+1}, \ldots \exists \subseteq C_N$

$\Rightarrow d(n, m) < \varepsilon \text{ if } n, m \geq N.$

So $\exists x_n \exists$ is Cauchy. So $\exists x \text{ with } x_n \rightarrow x.$ Since $x_n, x_{n+1}, \ldots \rightarrow x \text{ also}$
So $x \in \bigcap_{k=1}^{\infty} C_k$. Thus for all k

So $x \in \bigcap_{n=1}^{\infty} C_n$.

$f' > 1$

$f: \mathbb{R} \to \mathbb{R}$

$\Rightarrow f_1$, fixed or

$f(x) \to x$
DEF \((X, \mathcal{O})\) is first countable at open countable collection of elements \(X \in \mathcal{O}\)

\[B \text{ (the local base) } \text{ so that for any } \text{ and any } \exists U \text{ with } x \in U \subseteq Y \]

Example \((X, \mathcal{O})\) is not true

\[B = \{ B_r(x) : r \in \mathbb{Q}, 0 < r < 1 \} \]

DEF \((X, \mathcal{O})\) is first countable at every point.
DEF: \((X, Y)\) is 2nd countable if it has a countable base.

Example: \(\mathbb{R}^2\) with unit topology is 1st countable since its metric is not 2nd countable.

Theorem: \((X, Y)\) is first countable.

(a) \(x \in A \iff \exists k_n \in A \ x_n \to x\)

(b) \(f\) is cont. \(\iff (\forall x_n \to x, f(x_n) \to f(x))\)

Proof: like metric case.