Countability axioms

1) 1st countable if countable local base at every point.

2) 2nd countable if there is a countable base.

1) Metric \Rightarrow 1st countable

$$B_x = \bigcup_{r \in (0,\infty)} B_r(x)$$

2) \mathbb{R}^+ uniform topology is 1st countable (since metric) but not 2nd countable.
Proof of (2):

Prelim Fact: If \(X \times Y \) is 2nd countable \(\Rightarrow \) if \(A = X \) is discrete (every pt is isolated) \(\Rightarrow \) then \(A \) is countable.

Proof: \(\forall x \in A \exists \text{ some } B_x \text{ with } \)

\[
B_x \cap A - \exists x = \emptyset.
\]

So \(B_x \cap A - \exists x = \emptyset \). So \(x = x' \Rightarrow B_x \neq B_{x'} \) but \(x = x' \Rightarrow B_x \neq B_{x'} \)

\(\exists B \) but \(B \) is countable, so there are only countably many different \(B_x \)'s, so \(\text{ a countable number of } x \)'s in \(A \).
Uncountable by Cantor diagonal.

\[B_{13} \cap B_{13} \cap B_{13} \cap B_{13} \cap B_{13} = \emptyset. \]

Thus \(p_1 x \neq y \Rightarrow 1 \) so describe

\[x_1 = 0 \quad y_1 = 1 \quad \text{for use in next.} \]

\[x + y \leq \bar{x} \iff A \subseteq \bar{A} \quad \text{by \#1}. \]

Proof of Claim: \(A \subseteq \bar{A} \).

Consider \(A = 30, 13, 2 \neq R \).
A subspace of a first \aleph_1-countable space is first 2^{\aleph_0}-countable and the product of first 2^{\aleph_0}-countable spaces (with product topology) is first 2^{\aleph_0}-countable.

Proof in book

More definitions associated with countability.
Def:

1. X is **Lindelöf** if every open cover has a countable subcover.

2. X is separable if it has a countable dense set (i.e., a countable and $\overline{A} = X$).

Proposition:

If X is second countable, then

1. Lindelöf
2. Separable

Converse true if X is metric.
Ex \(\mathbb{R} \) is separable since

\(\mathbb{Q} = \mathbb{R} \) and \(\mathbb{Q} \) is countable

\(\Rightarrow \) a 2nd countable

Explicitly let

\[
\mathcal{B} = \bigcup \mathcal{B} \setminus (q) : q \in \mathbb{Q}, r \in \mathbb{Q} \setminus \mathbb{Q} \]
(1) A is a base.

(2) \(\exists \ B_n \subseteq X \) such that \(A = \bigcap B_n \).

(3) For each \(x \in A \), let \(A_x = \bigcup \{ B_n : x \in B_n \} \). This covers \(A \).

Let \(A_1 = A \). Claim: \(A_1 \subseteq \bigcup \{ B_n : \exists x \in A \} \).

Proof: So \(x \in A \) since \(\exists B_n \) is a base.

Proof: \(x \in A \) since \(\exists B_n \) is a base.
So if $B_n \subset X \in B_n \subseteq A$
but $B_n \subseteq A_n$ also so $x \in B_n \subseteq A_n$

$\Rightarrow \bigcup A_n = X$

(2) pick $\forall n, \exists x_n \in B_n$

and $D = \exists x_{n_3} \forall x \in B_n$ so $\forall B_n$

$D \cap B_n \neq \emptyset$ so dense
(1) \(\mathbb{R}^x \) is not Lindelöf, \(\mathbb{R} \) is not separable.

(2) \(\mathbb{R}^x \times \mathbb{R}^y \) is not Lindelöf.

(3) A subspace of a Lindelöf space doesn't have to be Lindelöf.
Separation Axioms

X is always T₁. Stating hypotheses:

i.e. pts are closed.

DEF: X is regular if $\forall x \in X$

- closed $B \ x \in B \ \Rightarrow$ \exists open U and V
- $x \in U$, $B \subseteq V$ and $U \cap V = \emptyset$

(2) X is normal if \forall

- disjoint closed A and $B \Rightarrow \exists$ open U and V
- $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$

$\text{normal} \Rightarrow \text{regular} \Rightarrow \#D$
(a) X is regular \iff Given X and open U \(x \in U \Rightarrow \exists \, \text{open } \tilde{V} \text{ with } x \in \tilde{V} \text{ and } \tilde{V} \subseteq U \)

(b) X is normal \iff

Given closed A and open U,

$A \subseteq U$ \Rightarrow \exists open V

$A \subseteq V$ and $\overline{V} \subseteq U$

Proof: (a) previously

(b) similar.
Thm: 1. Subspace of HD is HD.
 Product of HD is HD (with product).

2. (a) Subspace of reg is reg.
 (b) Product of reg is reg.

3. NOT TRUE FOR normal

Proof: (1) HW

2 (a): $y \subseteq x$, $B \subseteq y$ rel. closure.

We showed that $Cl_B(x) \cap y = B$.

And $x \notin Cl_B(x) \Rightarrow$ use reg in x.
\[\exists u, v \in X \text{ s.t. } (u, v) = 0 \]

\[u \cap v \text{ is empty} \]

\[\implies \forall y \text{ and } \forall y \text{ give} \]

the separation in \(Y \).

(\(\geq b \)) Proof using previous lemma.

\[X = \prod_X \exists \text{ is reg.} \]

\[x \in X \text{ s.t. } x \in U \text{ open in } X. \]

pick a basis \(\prod u \) with \(x \in \prod u \in U \)
For each x use reg and lem.

If V_x open, $x \in V_x$ and $V_x \subseteq U_x$. Let $V = \prod V_x$ open, $x \in V$, $V = \prod V_x$ and $V \subseteq \prod U_x \subseteq U$ so V is regular.