DEF: X is normal if for all closed A and B they have disjoint nbhds.

Which spaces are normal?

1. Regular + 2nd countable \Rightarrow normal
2. Metric \Rightarrow normal
3. Cpt + HD \Rightarrow normal

Big theorems about normality.
(1) **Urysohn's Lemma**: \(X \) is normal \\
A, B are disjoint and closed. \\
\[\Rightarrow \exists \text{ a continuous function} \]
\[f : X \rightarrow \Sigma_{011} \]
with \(f(A) = \Sigma_{0} \) \(f(B) = \Sigma_{1} \)

Note: This doesn't say that
\[f^{-1}(0) = A \quad \text{or} \quad f^{-1}(1) = B \]
That requires more hypotheses.
(2) Gruenwald's metrization theorem

Regular + 2nd countable \Rightarrow

\(\mathcal{X} \) is metrizable i.e. there is a metric which generates the topology.

(3) Tietze Extension \(\mathcal{X} \) is normal

A \subseteq \mathcal{X} closed and \(f : A \rightarrow \{0, 1\} \)

\[\Rightarrow \exists \text{ continuous } g : \mathcal{X} \rightarrow \{0, 1\} \]

That extends \(f \) on \(A \).

\[g|A = f. \]
Back to proof of normality theorems

Proof: Recall Reg. \(\Rightarrow x \in \overline{W} \) open

\[\Rightarrow \forall y \in x \text{ with } \overline{F} \subseteq W \]

let \(B \) be a countable basis?

Given \(A \) and \(B \) closed

\[A \cap B = \emptyset \]
Start \(x \in A \) use regularity to get a \(\text{wfd} \) \(W \) with \(W \cap B = \emptyset \) then use regularity to get a \(\text{nhd} \) \(V \) of \(x \) with \(\overline{V} \subseteq W \), now choose \(U \subseteq B \) with \(x \in U \subseteq V \) and \(\overline{U} \subseteq \overline{V} \subseteq W \) so \(\overline{U} \cap B = \emptyset \) also.

Do this for each \(x \).

Since we have a countable base \(\Rightarrow \exists \) countable set \(\bigcup_{\text{base}} \Rightarrow \exists \text{countable set} \)

\[\exists \cup_{n \in \mathbb{N}} \subseteq B, A \subseteq \cup_{n \in \mathbb{N}} \text{ and then } \forall n \in \mathbb{N}, \quad \overline{U_n} \cap B = \emptyset. \]
Do the same thing for \(B \), then \(F \) contains some \(x \geq V_n \leq B \), \(B \subseteq U V_n \) and \(\forall n, \overline{V}_n \cap A = \emptyset \).

\[
A \subseteq U U_n \quad B \subseteq V V_n
\]

but we shouldn't have \(A \cap B \neq \emptyset \).

(\(U U_n \) \(\cap V V_n \) = \(\emptyset \)).

Trick

\[
U_n' = U_n - \bigcup_{l=1}^{n} V_l
\]

\[
V_n' = V_n - \bigcup_{l=1}^{n} U_l
\]

These are open. \(A \subseteq U U_n' \) since each \(x \in A \) is in some \(U_n \), also \(B \subseteq V V_n' \).
and $U_{i_n'}$ and $V_{i_n'}$ are disjoint.

Why? Say $x \in U_{i_1'} V_{i_n'}$

$\Rightarrow \exists j, k \ x \in U_j' \land V_k'$, say $j \leq k$

$x \in U_j' \Rightarrow x \in U_j$

$x \in V_k' \Rightarrow x \notin U_j$

Contradiction. Similar $j \geq k$, switch roles of U_j' and V_k'.
Assume \(A, B \) closed, disjoint.

Recall \(d(x, A) \) is continuous in \(x \) and \(d(x, A) = 0 \iff x \in \overline{A} = A \).

Given \(a \in A \), \(d(a, B) = \varepsilon_a > 0 \).

Given \(b \in B \), \(d(b, A) = \varepsilon_b > 0 \).

Given \(b \in B \), \(\overline{B}_{\varepsilon_b}(b) \leq B_{\varepsilon_b}^c(b) \).

\(U = \bigcup_{a \in A} B_{\frac{\varepsilon_a}{2}}(a) \) and \(V = \bigcup_{b \in B} B_{\frac{\varepsilon_b}{2}}(b) \).

These are open, and \(U \cup V = \emptyset \).

Since
\[x \in U \supset \forall \overline{V} \]

\[\Rightarrow \exists a, b \ x \in B_{\frac{\varepsilon_a}{2}}(a) \cap B_{\frac{\varepsilon_b}{2}}(b) \]

\[x \in B_{\frac{\varepsilon_a}{2}}(b) \]

\[d(a, b) \leq d(a, x) + d(x, b) \leq \frac{\varepsilon_a}{2} + \frac{\varepsilon_b}{2} \leq \max(\varepsilon_a, \varepsilon_b) \]

Impossible since

\[a \in A \]

\[b \in B. \]