easy: this is topology.

Let \(T \) = all \(T \) -regular unions of \(T \) -regular sets.

easy: this is a base.

Let \(\mathcal{B} = \{ T \mid T \supseteq \text{ finite intersections of } \mathcal{B} \} \).

Example: \(\mathcal{B} = \{ \emptyset, \{ a \}, \{ a, b \} \} \).

So \(\mathcal{S} = \mathcal{S} \cup \{ a \} \cup \{ a, b \} \) is a subbase.

For \(\mathcal{S} \) is a subbase if

\(R \subseteq \mathcal{S} \).

For \(\mathcal{S} \) is a subbase if

}\)
Back to example

\[S = \frac{1}{2} \sum_{n=1}^{\infty} (q_{1,0})^{n}, \quad q_{1,0} > 0 \quad \alpha \in \mathbb{R}^{3} \]
Order topology on strictly linear ordered sets.

Let B be all sets of the form:

1. (a, b)
2. $[a_0, b)$ if a_0 is the smallest element if it exists.
3. $(a, b_0]$ if b_0 is the largest element if it exists.

Fact: This is a base that generates the order topology.
Examples

(1) \((\mathbb{R}, \leq)\) yields standard topology with base \(\mathcal{B} = \{(a, b) : a < b\}\)

(2) Dictionary order on \(\mathbb{R}^2\)

\(\leq ((a, b), (c, d))\) with \(a < c\)

\((a, b), (a, c)\) \(b < c\)

not the standard topology.
\((\mathbb{Z})_+ = \ldots 3, 3, 3, 3 \)

has smallest element 1.

\[\sum_{1, 2} = 3 \cdot 3 \]

\[(n-1, n+1) = 3 \cdot n \cdot \frac{3}{3} \]

discrete topology.
(4) \(\mathbb{Z} \times \mathbb{Z} \) with the dictionary topology.

\[(1, 1) \text{ smallest } \]

\[\text{every pt is open but } (2, 1) \]

any open interval containing \((2, 1)\) contains a point \(< (2, 1) \) or \((4, b) \) for some \(b \)

and thus \((1, b)\) for all \(b \geq 6 \)

so infinitely points.
Given \((X, T_X)\) and \((Y, T_Y)\) and
\[T_{X \times Y} (y, y) \Rightarrow \text{de topology on} \]
the product \(X \times Y\) is \(\bigotimes_{x \times y} \) which
is generated by the base
\[\bigcup \{ U \times V \mid u \in T_X, v \in T_Y \} \]
Check B is a base.

\[(a, b) \times (c, d) \text{ is typical base element.} \]

\[\{ (u_1, v_1) \in (u_2, v_2) \times (u_3, v_3) \mid (u_1, v_1) \in (u_2, v_2) \times (u_3, v_3) \} \]

\[\{ (u_1, v_1) \times (u_2, v_2) \} \]

Theorem 1: Intersection of base elements yields a base element.
B is not a topology i.e. the only open sets in $\mathcal{J}_{\mathbb{x,y}}$ are not just $U \times V$

eq \forall \left((U_1 \times V_1) \cup (U_2 \times V_2)\right) \in \mathcal{J}_{\mathbb{x,y}}

but is not a product
Now reduce to bases in \(X \) and \(Y \).

Theorem: If \(B \) is a base for \(J_X \) and \(C \) is a base for \(J_Y \) then:

\[
B = \{ B \times C \mid B \in B, C \in C \}
\]

is a base for \(J_{X \times Y} \).

Uses Lemma: \(F \) is a topology on \(X \) and \(C \in T_X \) has the property that for \(U \in T \) and \(x \in U \), \(\exists C \in C \) with \(x \in C \subseteq U \Rightarrow C \) is a base for \(Y \).
Proof of Theorem: We show that $B_{x}y$ satisfies the conditions for $C_{x}y$.

In the lemma, say W is open in the topology base \mathcal{B}, i.e., for W, $x \in W$ with $(x, y) \in U \times V \subseteq W$.

By definition of the product topology base \mathcal{B}, for any y with $x \in B \subseteq \mathcal{B}$, there exists $y \in y$.

But Y_{x} has base B_{x}, so for any $x \in B_{x}$, $y \in C \subseteq V$ with $x \in B \subseteq C$. Similarly, for any $y \in C$, there exists B_{x} with $y \in B_{x}$.

So $B_{x}y$ satisfies the lemma.
But $\text{R} \times \text{I} \times \text{s}$ yields $\text{R} \times \text{I}$

Therefore, $\exists (a,b) \in (\mathbb{Q}^0)^3$

base for $\text{R} \times \text{I} \times \text{s}$ on \mathbb{P}^2.

$\text{R} \times \text{s}$ has base $\mathbb{Z} \cap (0,1,1)$

R has base $\mathbb{Z} \cap [0,1,0)$

Examine $\text{R} \times \text{I} \times \text{s}$
\[x \mapsto x, \quad y \mapsto x \mapsto x \]

\[\begin{align*}
T_1 : & \text{ } \mathbb{R}^2 \rightarrow \mathbb{R}^2 \\
T_1^{-1} : & \text{ } \mathbb{R}^2 \rightarrow \mathbb{R}^2 \\
T_2 : & \text{ } \mathbb{R}^2 \rightarrow \mathbb{R}^2 \\
T_2^{-1} : & \text{ } \mathbb{R}^2 \rightarrow \mathbb{R}^2
\end{align*} \]

\[T_1 : (x, y) \mapsto (y, x) \]

\[T_2 : (x, y) \mapsto y \]

\[T_1^{-1} : (x, y) \mapsto (x, y) \]

\[T_2^{-1} : (x, y) \mapsto (x, y) \]

\[\begin{align*}
T_1^{-1} (A) & = A \times y \\
T_2^{-1} (B) & = B \times y \\
T_2 (B) & = B \times x \\
T_1 (A) & = A \times x
\end{align*} \]
Thus if \(u \in \mathcal{F}_x \Rightarrow \Pi^{-1}_1(u) \) is open in \(\mathcal{G}_{x \times y} \),

\(\Pi^{-1}_1(u) = \mathcal{U} \times y \)

Similarly \(v \in \mathcal{G}_y \Rightarrow \Pi^{-1}_2(v) \) is open \(\mathcal{G}_{x \times y} \).

Theorem: \(\exists \ \Pi^{-1}_1(u) : u \in \mathcal{G}_{x \times y} \)

\(\exists \ \Pi^{-1}_2(v) : v \in \mathcal{G}_{y \times z} \)

is a subbase for \(\mathcal{G}_{x \times y} \).
Idea in proof

\[\pi_1^{-1}(y) \land \pi_2^{-1}(v) \]

\[= (u \times y) \land (x \times v) \]

\[= u \times v \text{ a base element for } x \times y. \]