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Abstract. This paper provides an informal survey of the various mathe-
matical structures that appear in the most basic models of fluid motion.

1. Introduction

Fluid mechanics is the source of many of the ideas and concepts that are
central to modern Mathematics. The vestiges of these origins remain in
the names of mathematical structures: flows, currents, circulation, frames,
. . ., and in the names of the distinguished mathematician-scientists which
pervade the terminology of both fields: Euler, Bernoulli, Stokes, Cauchy,
Lagrange, . . .. Mathematicians have abstracted and vastly generalized ba-
sic fluid mechanical concepts and have created a deep and powerful body
of knowledge that is unfortunately now mostly inaccessible to fluid me-
chanicians, while mathematicians themselves have lost all but a passing
knowledge of the physical origins of many of their basic notions.

This paper provides an informal survey of the various mathematical
structures that appear in the most basic models of fluid motion. As befits
this volume it is strictly pedagogical. There are no original results, and most
of what we say here has been known for at least a century in one guise or
another. In style it attempts to reproduce the informal tutorials that took
place during the Newton Institute program in Fall, 2000. Mathematical
objects are described informally with an emphasis on their meaning in
Fluid Mechanics. Many formulas are stated without proof. The paper is
meant to be a friendly introduction to basic concepts and ideas and will
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hopefully provide an intuitive foundation for a more careful study of the
literature. Readers are strongly encouraged to consult the references given
in each section.

In describing the fluid model we give primacy to the actual evolution
of the fluid, to the fluid flow, as opposed to the velocity fields. This agrees
with our direct experience of seeing fluids move as well as being very natural
in the mathematical progression we describe. While conceptually valuable,
this point of view is computationally very impractical. The basic equations
of Fluid Mechanics are framed in terms of the velocity fields. Solutions of
the equations are difficult to obtain, but formulas for the fluid motions are
virtually nonexistent.

One of the goals of the paper is to introduce students of fluid mechanics
to the “world view” of modern Mathematics. A common view among math-
ematicians is that Mathematics is the study of sets with structures and of
the transformations between them. From this point of view, the basic model
of Fluid Mechanics is the set consisting of the fluid body and the various
additional structures that allow one to discuss such properties as continu-
ity, volume, velocity and deformation. The flow itself is a transformation
of the fluid body to itself and a basic object of study is the transport of
structures under the flow.

It is considered a mathematical virtue to use just those structures which
are needed in a given situation and no more. The goal is not to be mind-
lessly abstract but rather to discover and illustrate what is essential and
fundamental to the task at hand. This has the added advantage that con-
clusions have the widest applicability. Thus we develop the fluid model step
by step, introducing structures to fit certain needs in the modelling process.
When possible coordinate free terminology and notation is used. We invoke
the usual argument in its favor: anything fundamental shouldn’t depend
on the choice of coordinates and being forced to treat computational ob-
jects as global entities provides a new and sometimes valuable perspective
on familiar operations. We do, however, try to connect new objects with
familiar formula, and we try to be clear when formulas are only valid in
usual Euclidean space.

We have attempted to keep the paper accessible to a wide audience, but
some fluid mechanical terminology is used without explanation. General
readers may consult any standard text; the mathematically inclined may
prefer [22], [7], [16] or [5].

2. Basic Kinematics and Mathematical Structures

We begin by describing the most fundamental mathematical structures used
in modelling the simplest type of fluid behavior. Unless otherwise stated the
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fluid is three-dimensional; two-dimensional flow can be treated similarly.

2.1. THE FLUID REGION, FLUID MAPS AND CARDINALITY

The first step is to model the fluid region itself. In Fluid Mechanics it is
usually said that the fluid is a continuum. In mathematical language this
says that, at least locally, the fluid looks like usual two or three-dimensional
space. We allow the possibility that on large scales the fluid is not flat, but
rather can curve back on itself like the surface of the (almost) spherical
earth. Objects with a local structure like the plane or three space, but
perhaps nontrivial global behavior are called 2- or 3-dimensional manifolds.
A fluid particle is a mathematical point in the manifold. The generic fluid
region or fluid body is denoted B.

The modelling of the fluid as a manifold has many implications and
some obvious problems. It is clearly false on very small scales as it com-
pletely ignores the molecular nature of fluids. In addition, a mathematical
point obviously has no physical meaning. Nonetheless, the theories and
technologies based on continuum models have been wildly successful and
we can proceed with confidence using a manifold model.

As a fluid flows particles are transported. In terms of the model the fluid
motion is defined as the collective motion of the particles. It is assumed
that the individual particles do not split into pieces, and each has a well
defined future and remains distinguished for all times. This means that the
evolution is described by the transformation that takes the initial position
of a particle as input and gives the position after a time T as the output.
Thus for each time T the evolution of the fluid after time T is described
by a function (or map), f , from the initial region occupied by the fluid,
B0, to the region occupied after time T , BT . The usual notation for this is
f : B0 → BT , indicating that f is a function with domain B0 and range BT .
The function f is called the time-T fluid map. The typical point in a fluid
region is labelled p, q, etc. Note that these label the geometric position in
the region and not the fluid particles, and so they do not move with the
flow.

During their evolution it is further assumed that fluid particles do not
overlap, coalesce or collide. Thus if two points are distinct, then their po-
sitions after time T are different, or p 6= q implies f(p) 6= f(q), and so f
is a one-to-one (or injective) function. Since by definition, BT is the fluid
region after time T , we have that f : B0 → BT is an onto (or surjective)
function, which is just to say that for any p̂ in BT there is a p in B0 with
f(p) = p̂, i.e. the particle at p̂ came from somewhere.

Summarizing, the most basic assumptions on a fluid map is that it is
one to one and onto, i.e. it is a bijection, or what is sometimes termed a
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one-to-one correspondence. This means that f preserves the “number” of
fluid points. This idea is formalized as the most fundamental property of a
set, its cardinality. By definition, two sets have the same cardinality exactly
when there is a one-to-one correspondence between them. While this may
not seem like much information about the fluid map it is worth noting that
there are sets with different cardinality.

Exercise 2.1 Show that there is a one-to-one correspondence between the
set of points in the interval, 0 ≤ x ≤ 1, and the set of points in the unit
square in the plane, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, but that these sets have a
different cardinality from the set of integers 0,±1,±2, . . ..

A bijection f always has an inverse map, usually denoted f−1, which
by definition satisfies f ◦ f−1 = f−1 ◦ f = id. While the inverse of a fluid
map always exists, there is no assumption in general that it is a physically
reasonable fluid map, though in certain cases it can be.

Elementary set theory is covered in the first sections of most textbooks
in Algebra or Topology, [13] is a standard text, and [26] is recreational but
informative.

2.2. STRUCTURES, TRANSPORT, AND CATEGORIES

At this point our fluid is described by the most basic of mathematical
objects, sets and a transformation. We pause now to introduce some general
notions about mathematical structures and how they are transported by
transformations.

Mathematical structures take many forms. The most basic examples
are an order structure which declares which elements are larger than others,
a topology which is a distinguished collection of subsets, and an algebraic
structure which is a binary operation on the set which satisfies certain
rules. Other common structures are made out of various kinds of functions
into or out of the set. For example, a velocity field is a map out of the
set, it assigns a vector to each point in the set. A loop is a map from the
circle into a set. The collection of all tangent vectors to a space are turned
into the tangent bundle, which in turn is the basis for other structures like
tensors, Riemannian metrics and differential forms. The general intuition
is that a structure is something that “lives on top of ” the set, representing
additional information and properties.

If a transformation between underlying sets is sufficiently well behaved
it induces a map on the various structures, transforming a structure on
one set to the same kind of structure on the other set. For example, in
ideal magnetohydrodynamics the fluid flow transports the magnetic vector
field at time zero to the magnetic vector field after a time T . The general
mathematical rubric is that transport in the direction of the map is called
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push forward while pull back is an induced map that goes in the direction
opposite to the given map. If the map we are studying is a fluid map, then
the push forward transports the structure in forward time while pull back
refers to transport from the future backward, usually back to the initial
state of the system. The standard notation puts a star on the given map to
indicate the induced map on structures, with a subscript indicating a push
forward and a superscript indicating a pull back. Thus if f is a fluid map
and α is a structure (say a magnetic field) then f∗(α) is this vector field
pushed forward by the fluid evolution and f∗(α) indicates its pull back.

Since a fluid map f is invertible, pulling back is the same as pushing
forward by the inverse f−1, and we will freely pass between the two. De-
pending on the structures it is usually most natural to either pull back or
else push forward. As a general guideline when a structure is defined by a
map into the set it is pushed forward. For example, a loop in the fluid region
is a map Γ : S1 → B0, and this naturally pushes forward to the same kind
of structure on BT since the composition f ◦ Γ is a map S1 → BT called
f∗Γ. On the other hand, a structure defined by maps out of the set, say a
scalar field α on BT , is most naturally pulled back because α ◦ f = f∗α is
a map out of B0. Another basic pull back is that of a set. If N is a sub-
set of the fluid region BT , then its pull back is a subset of B0 defined by
f∗(N) = {p in B0 : f(p) is in BT }; this set is also often denoted f−1(N).

The notion of a mathematical category and its morphisms formalizes
many of the notions of sets, structures and transformations. The most ba-
sic category is the collection of sets and other categories consist of sets with
some specific additional structure such as topological spaces, vector spaces,
smooth manifolds, or flows on manifolds. The morphisms associated with
a category are the maps between sets that preserve the structure, i.e. the
induced map on structures is defined and a transported structure is com-
patible with the pre-existing one. For example, linear transformation are
the morphisms of vector spaces and continuous functions are the morphisms
of topological spaces.

An isomorphism in a category is a morphism that is a bijection and its
inverse is also a morphism. Most of the commonly studied categories have
their own traditional name for their isomorphism such as bijection in the
category of sets, homeomorphism in the category of topological spaces, and
isometry in the case of geometries. Within a given category isomorphic ob-
jects are considered indistinguishable, and indeed a rather formal definition
of a mathematical area of study is that it studies those properties that are
preserved by the morphisms in its particular category.

The text [15] is a standard reference.
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2.3. CONTINUITY AND TOPOLOGY

Exercise 2.1 clearly indicates that a bijection can scramble a fluid domain
very badly, prompting the requirement that fluid motions preserve the con-
tinuum nature of the fluid, not tearing or distorting it too wildly. This
requirement is the essence of Topology and its morphisms, the continuous
functions, and is expressed in the assumption that fluid particles which are
sufficiently close initially should still be close after evolving for time T . The
technicalities arise from defining “sufficiently close” and “still be close”.

A topology as a structure on a set is simply a collection of distinguished
subsets called the open sets (there are conditions which are not important
here). Open sets are the allowable neighborhoods of the point and neigh-
borhood is used synonymously with open set. A property is true for points
sufficiently close to p if it is true for all open sets containing p. In the cate-
gory of sets with topologies (topological spaces) the morphisms or structure
preserving maps are the continuous functions. A function g : X → Y be-
tween two topological spaces is called continuous if the pull back of an open
set is open. Thus for each open set U in Y it is required that f∗(U) is an
open set in X, or by acting on all open sets, it is required that the pull
back of the topology on Y is compatible with the topology on X.

Sequences provide a simple way to connect this abstraction with the
more physical condition that nearby fluid particles should stay near each
other. In terms of a given topology, the sequence (pn) converges to the
point p0, written pn → p0, when any neighborhood V that contains p also
contains the tail of the sequence, i.e. there is an N so that n > N implies
that pn ∈ V . If f is the time T fluid map, the flow preserving the continuum
structure clearly requires that pn → p0 implies f(pn) → f(p0). This says
that any neighborhood U of f(p0) must contain the tail of the sequence
f(pn). But transporting this data back to the fluid at time zero we see
that the convergence after time T requires that pn ∈ f∗(U) for n > N .
But since pn → p0, this would be achieved by requiring that f∗(U) is itself
a neighborhood, which is the case if f is continuous in the sense defined
above.

Exercise 2.2 In the standard topology on IRn a set U is open when for
every p ∈ U there is an r, so that the ball Br(p) = {q : |q − p| < r}
is wholly contained in the set U . Show that in this case the definition of
continuity of a function using the pull back of open sets is the same as the
usual one: f is continuous at p if for all ε there exists a δ so that

|q− p| < δ implies |f(q)− f(p)| < ε .

In the fluid model particles which are sufficiently close after time T
should come from particles which were close at time zero. Thus we assume
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that the inverse of a fluid map f−1 is also continuous. Such a continu-
ous bijection with a continuous inverse is called a homeomorphism. Homeo-
morphisms are the isomorphisms in the category of topological spaces. Un-
der a homeomorphism the pull back and the push forward of each open set
is an open set, and so the pull back of the topology on Y is exactly the
topology on X, and vice versa. Thus the homeomorphism has altered only
labels and has altered nothing related to the topology. Thus it makes sense
to define Topology as the study of those properties that are invariant under
homeomorphisms. These properties include the connectedness, the number
of holes, and the dimension of the space. So in the model these topological
properties of the fluid region do not change as the fluid evolves.

In requiring fluid maps to be homeomorphisms we are excluding some
common fluid behaviors. When we sip our coffee, the fluid tears, and we
see the droplets of rain coalescing into the continuum of the creek. It is also
worth noting that what is commonly called “The Continuity Equation” in
Fluid Mechanics is not a statement about the kind of continuity discussed
in this section, but rather a statement about the preservation of the mass
of the continuum during its evolution (see sections 2.5 and 4.6).

The books [20] and [8] are standard Topology texts.

2.4. FLUID MOTIONS AND MATHEMATICAL FLOWS

At this point a fluid map describes the evolution of the fluid up to fixed, but
arbitrary time. The complete evolution is described by a family of maps, φt,
one for each time t. The particle at position p at time 0 is at the position
φt(p) after time t, and so what was denoted f above is now denoted φT .
If we fix p and vary t, the positions φt(p) sweep out the trajectory, flow
line or path of the particle. For simplicity of exposition we assume that the
fluid motion can be defined for all forward and backwards time and so φt
is defined for all t ∈ IR. In terms of fluid maps, slip boundary conditions
say that the fluid region is preserved by the fluid motion, Bt = B for all
t. The no slip conditions require that on the boundary of B, φt = id for
all t. Henceforth we always assume that our fluid maps satisfy at least slip
conditions.

The family of fluid maps φt is best described as a single map on a
bigger space including both the fluid domain and time, φ : B × IR → B,
with φ(p, t) = φt(p). In the previous subsection we required that φt is a
homeomorphism for each t. It is clear that we must also require continuity
as the time is varied so that fluid particles don’t suddenly jump during
their evolution. This is accomplished by requiring that the full function φ
is continuous, i.e. continuous in both variables.

Remark 2.3 It is traditional in Fluid Mechanics to distinguish the Eu-
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lerian and the Lagrangian perspective. In the first, the labels are pinned
down in the fluid region, in mathematical language they are local coordi-
nates in the manifold modelling the fluid. In the Lagrangian perspective,
the fluid particle is labelled and that label remains on the particle as it
moves. In addition, the Eulerian perspective is a field theory, focusing on
the velocity vector field while the Lagrangian focuses on the motions or
flow lines of particles. The point of view here is mixed: we always label
using a fixed, pinned down coordinate system in the fluid region and never
use Lagrangian or advected coordinates, but the primary focus is on the
motion of particles. It is also traditional in Fluid Mechanics to use x for the
Eulerian coordinate, and to denote a trajectory as x(t), indicating how the
coordinate varies as a function of time. This use of the same symbol to indi-
cate both a coordinate and a function of time makes many mathematicians
uncomfortable; it represents an unacceptable confusion of different classes
of mathematical objects. Thus we denote the time evolution by a distinct
function, φ, which encapsulates all the time and space evolution. To avoid
confusion with the training of fluid mechanicians, while maintaining the
notation x = (x1, x2, x3) for the local coordinates, p and q are used here to
denote the typical point in the fluid region (labelled by the fixed coordinate
system) rather than the more common mathematical x or x.

There is a useful distinction among fluid motions based on how the
future of particles depends on the starting time. Pick a fixed, but arbitrary
location in the fluid region and monitor the future of the particle that is
there at time 0 and also that of the particle that is there at some later
time. If these futures are always the same the flow is steady, otherwise it is
unsteady.

This distinction has a nice formulation in terms of the algebra of the
time parameter, i.e. of the real line. Begin the evolution of the fluid particle
at p and flow for time t, now at this point begin again and flow for time s,
so we are at the point φs(φt(p)). On the other hand, we could start at p,
flow for time t and then continue without restarting time for another time
interval s, ending up at the point φs+t(p). The flow is steady exactly when
these points are the same for all s, t and points p, or in terms of the fluid
maps, φs ◦ φt = φs+t. This group law coupled with the fact that φ0 is the
identity map says that a steady flow is an action of the real numbers on the
region B. This implies, in particular, that the inverse maps be computed
by reversing time, φ−1

t = φ−t
Within most of mathematics the word flow refers to this kind of action of

the reals on a space. In particular, mathematical flows always correspond to
steady fluid flows. For this reason the general, perhaps unsteady, evolution
of a fluid is called here a fluid motion reserving the word flow for steady
flows.
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Two simple examples of one-dimensional flows are the linear flow, φt(p) =
p + rt, and the exponential flow, φt(p) = pert, where r is a real number.
In these cases the group law of the action corresponds to the standard dis-
tributive and exponential laws, respectively. Flows correspond to solutions
of time-independent differential equations, and it is remarkable that any
such solution yields a flow with nice algebraic properties.

The simplest unsteady fluid motions are periodic. A fluid motion (or
fluid map φt) is called periodic if starting at an initial time t at the point p
yields the same future as starting at the same point at a time P later, where
P is called the period. This implies that φt+P = φt ◦ φP , and letting t =
(n−1)P for an integer n, that φnP = φP ◦φP ◦ . . . ◦φP (n times). Thus if we
define the Poincáre map as g = φP , its iterates (repeated self compositions)
satisfy gn = φnP , and so they describe the evolution of the fluid. The
Poincáre map is often called the stroboscope map, as it corresponds to
viewing the fluid under a light that turns on once each period.

If we have a fluid motion φt on a region B and a homeomorphism h
from B to another region B̂, we can push forward the flow to one on B̂ by
the rule h∗(φt) = h ◦ φt ◦ h−1. The motion for time T on B̂ is obtained by
first coming back to B via h−1, then flowing from that point via φT , and
then going back to B via h. If the homeomorphism is from B to itself, it
represents a change of coordinates, and if h∗φt = ψt one says that two flows
φt and ψt are the same fluid motion up to change of coordinates by h.

2.5. INCOMPRESSIBILITY, MASS CONSERVATION AND MEASURES

If there are no mechanisms for inflow or outflow as a fluid subregion evolves
its mass stays the same. Similarly, if there are no mechanisms to compress or
expand regions of the fluid, then the volume of fluid subregions is preserved
under the evolution. Both of these properties can be included in the model
by postulating measures that are invariant under the fluid motion.

A measure is a rule which assigns a non-negative number to various
subsets of the main set (again, there are additional technicalities that are
not crucial here). In a fluid model, the measure of a subset could represent
the mass of the fluid in the subset, or perhaps the volume of the subset.
Thus if m(U) is the mass of the fluid contained in the region U , then
mass conservation of the flow φt is expressed by m(φt(U)) = m(U) for all
measurable sets U and all times t. Similarly, if ν(U) is the usual three-
dimensional volume (Lebesgue measure) of a set U in IR3, then a fluid flow
is incompressible if ν(φt(U)) = ν(U) for all measurable sets U and all times
t.

Measures are most commonly used for integration, and one writes
∫
U α dν

for the usual integral of the real valued function α over the region U , and
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thus ν(U) =
∫
U dν. A density ρ is a real-valued function which represents

the “measure per unit volume”, or more precisely, ρ is a density for the
measure m, exactly when m(U) =

∫
U ρ dν. One then writes dm = ρ dν.

If g : X → Y is a function, we can use it to transport measures. Given a
measure m on X, its push forward to Y is g∗m. It is defined by the rule that
the measure g∗m assigns to a subset V of Y is the measure of g∗(V ), or in
symbols, g∗m(V ) = m(g∗(V )). Thus a fluid motion φt preserves the mass
given by the measure m exactly when φt∗m = m, for all t (in the unsteady
case m may be time dependent). Similarly, incompressibility is expressed
by φt∗ν = ν, for all t.

¿From a strictly kinematic point of view there is little difference between
preserving a mass m or preserving the volume ν. This is consequence of a
theorem of Oxtoby and Ulam [21] (Moser [19] in the smooth category). If
the mass density ρ is a reasonable function and for simplicity we assume
that the total mass equals the total volume,

∫
ρ dν =

∫
dν, then the

theorems give a homeomorphism (diffeomorphism) h of B to itself which
pushes forward m to ν, h∗m = ν. Thus if φt preserves m then by changing
coordinates by h, the fluid motion h∗(φt) preserves ν.

Elementary measure theory and integration is covered in most textbooks
in Analysis, [12] is a measure theory standard.

2.6. DIFFERENTIABILITY

The laws of mechanics are expressed using derivatives, and indeed, the
development of mechanics went hand in hand with the invention of calculus.
The continuity of the fluid motion arose from the need to preserve the
continuum structure of the fluid body. But the assumption that the fluid
region is locally Euclidean gives more than just a local topology, there
is also the algebraic structure of Euclidean space as a vector space. The
assumption of differentiability of fluid motion means that on small enough
scales the fluid map looks like a linear map of a vector space to itself. This
is made precise by Taylor’s theorem and its converse which says that a map
f is differentiable exactly when it is linear up to an error of specified type.
More precisely, in Euclidean space the matrix A is the first derivative of
the map f at the point p exactly when

f(p + h) = f(p) +Ah + o(|h|) , (1)

with |h| the usual Euclidean norm and o(|h|) representing a quantity r(h)
that goes to zero sufficiently fast so that r(h)

|h| → 0 as h→ 0.
The matrix A is, of course, the usual Jacobian matrix, for which there

are numerous notations; its (i, j)-th entry is ∂fi/∂xj . When f is real valued,
i.e. has only one component, then the derivative matrix is a row vector
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representing the gradient, ∇f . It is common in Fluid Mechanics to also use
∇ in the multidimensional case, and so we shall denote the full derivative
as ∇f , or ∇f(p). A function f is continuously differentiable if a matrix A
satisfying (1) exists at each point p and the matrices vary continuously
with the evaluation point. In this case one writes f ∈ C1.

Higher derivatives can be defined using the analog of (1). A function
is C2 when it locally looks like a quadratic polynomial up to an error of
o(|h|2). The notation for the analog of (1) grows complicated, but in the
simplest case of a real valued function α, C2 means that

α(p + h) = α(p) +∇α · h + hT ·H(α) · h + o(|h|2) ,

where H(α) is the Hessian matrix of α, ( ∂2α
∂xi∂xj

), and the Hessian must vary

continuously with the evaluation point. Continuing, a function is Ck if it
locally looks like a degree k polynomial up to order o(|h|k). If a function
is Ck for all k, it is called C∞. A condition that is even stronger than C∞

is the requirement that the Taylor’s series converges in a neighborhood of
each point. Such functions are called real analytic and their class is denoted
Cω.

Exercise 2.4 Let the real valued function α be defined by α(0) = 0 and
for x 6= 0, α(x) = exp(−1/x2). Show that all orders of derivatives at 0 are
equal to 0 and thus the Taylor’s series about 0 is identically zero. However,
the function α is not identically zero in any neighborhood of the origin, and
so α is an example of a C∞ function that is not Cω.

On a manifold, a function is Ck if it is Ck in local coordinates in the
domain and the range, and we need to treat the derivative as a linear trans-
formation rather than a matrix. The matrix represents the linear transfor-
mation in particular coordinates, but it is the linear transformation that
has coordinate free meaning.

In formulating differentiability from the structural point of view, the
objects in the category are C∞-manifolds. These are manifolds in which
C∞-compatible local coordinates can be defined. The morphisms are C∞-
maps, and the isomorphisms are called diffeomorphisms, A diffeomorphism
is a C∞-bijection whose inverse is also C∞. This category is the subject of
Differential Topology. Henceforth we assume that fluid maps φt are C∞-
diffeomorphisms for each t, and further, that the family itself is C∞ in t.
It is worth noting that C3 is enough differentiability to do virtually all of
Fluid Mechanics, but we shall not deal with that level of technicalities here.

Introductions to Differential Topology are given in [17] and [24], and
[11], [6], and [14] are standard texts.
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3. Vector Fields and the Tangent Bundle

At this point we have developed all the basic kinematic assumptions for the
simplest models of fluid flow. Forces enter into the models by their action
on velocity fields, the prototypical example of a vector field. Vector fields as
a mathematical structure are the basis of many additional structures and
operations, and in this section we discuss some of those that are valuable in
describing fluid motions. Principal among these are the tangent bundle and
other structural bundles that live “above” the fluid body. The fluid motion
and its derivatives induce an action on these bundles that transport the
various structures. The nature of this transport is the key to describing
geometric and topological aspects of the fluid motion.

3.1. VECTOR FIELDS AND THE VELOCITY FIELD

Given a fluid motion φt, its velocity field u at the point p at a time t is the
instantaneous velocity of the fluid particle that occupies that point at that
time. Note that this is the particle that started at φ−t(p) at time zero, and
so

u(p, t) =
∂φ

∂t
(φ−t(p), t) ,

or
u(φt(p), t) =

∂φ

∂t
(p, t) . (2)

This is sometimes called the advection equation. Given a velocity field u,
its fluid motion φt is obtained by solving the differential equation given by
(2). It is easy to check that a fluid motion is steady as defined in Section
2.4 if and only if its velocity field is time independent, u(p, t) = u(p),
and the motion is T -periodic exactly when the velocity field is T -periodic,
u(p, t+ T ) = u(p, t).

Exercise 3.1 The planar velocity field u(p) = (−p2, p1) represents uni-
form counter-clockwise fluid motion. Show that its flow is φt(p1, p2) =
(p1 cos(t) − p2 sin(t), p1 sin(t) + p2 cos(t)), and that in this case the group
property φtφs = φs+t is a reflection of standard trigonometric identities.

The velocity field at a fixed time is an example of a vector field, i.e. a
rule that assigns a vector to each point in the fluid region. Other common
examples of vector fields are the magnetic field and the vorticity field. We
will adopt the fairly standard mathematical convention that the terminol-
ogy “vector field” refers to a time independent field. Through equation (2)
mathematical flows and vector fields go hand in hand and it is usual to
pass freely from one to the other without comment.

In certain circumstances the time parameterization of a flow is not im-
portant, and one wants to think of the trajectories as just curved lines in
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space. In this case it is common in the sciences to call the curve constitut-
ing the trajectory a field line, as in a magnetic field line and a vortex (field)
line. The mathematical name for a way to fill a manifold with a collection
of curves is a one-dimensional foliation, and the individual curves are called
the leaves. Note that the nonzero scalar multiple of a given nonvanishing
vector field, αu, gives the same foliation as the original field, but gives rise
to a different flow.

3.2. THE TANGENT BUNDLE

There is a common and quite understandable confusion that occurs early
in a student’s mathematical training; is the base of a vector at the origin or
at the point along a curve to which it is tangent? This usually leads to the
mathematical vector space called IR3 being somehow conceptually distinct
in the student’s mind from the physical notion of velocity vectors.

The resolution of this unsatisfactory state is to attach a copy of the
vector space IR3 to each point of three-dimensional space and then one can
accommodate all possible vectors being based at all possible points. The
resulting object is the tangent bundle of three space, and is denoted T IR3.
It is equal to IR3 × IR3, with the first factor holding base points and the
second the tangent vectors. The collection of vectors attached to a single
basepoint p is called the tangent space or fiber at that point and is written
TpIR3.

A vector field assigns a vector to each basepoint in IR3. Thus properly
speaking a vector field is a map U : IR3 → T IR3. Amongst all such maps
vector fields have the distinguishing property that they map a basepoint to
a vector based at that point. This is symbolically expressed by defining the
projection π : T IR3 → IR3 which takes a vector to its basepoint π(p, ~v) = p.
A vector field then satisfies π ◦U = id. Since it picks out just one vector
“above” each point, a vector field is called a cross section of the tangent
bundle.

The velocity field studied in Exercise 3.1 is formally written as U(p1, p2) =
(p1, p2,−p2, p1). It is clear why in practise the first two components are usu-
ally suppressed, but it is equally clear that they need to be there in the
proper understanding of a vector field. A compromise is to use the base
point as a subscript, and so, for example, vp represents a vector based at
p.

For a fluid region B contained in IR3, its tangent bundle is denoted
TB and is also a Cartesian product TB = B × IR3. For a 3-dimensional
manifold the collection of tangent vectors based at a single point is always
the vector space IR3, and locally any tangent bundle looks like a product,
but in general the entire bundle is not a product. The simplest example



14

is in one dimension lower and is provided by the two sphere, S2. Now if
in fact, TS2 = S2 × IR2, then for each point p on the sphere, we pick the
vector (p, (1, 0)), yielding a nonvanishing vector field on the sphere. This
contradicts the “hairy ball” theorem (see, for example, [11]).

3.3. TRANSPORT OF VECTOR FIELDS

The next step is to understand how vectors and vector fields are moved by
the fluid, or more generally transported by a diffeomorphism. Recall that
Taylor’s theorem

f(p + h) = f(p) +∇f(p)h + o(|h|)

says that up to an error, on small scales the function f acts like the linear
map ∇f(p). In the sciences it is common to use δp in place of h, represent-
ing a differential or infinitesimal displacement in the actual space. However,
in Differential Topology the linear action of the derivative is lifted from the
manifold up to the attached tangent vectors. Thus the function f induces
a map on the tangent bundle with the map itself transporting basepoints
and the derivative transporting tangent vectors. This induced map is called
the tangent map and is written as Tf(p,vp) = (f(p),∇f(p)vp).

The transport of vectors can also be viewed through the chain rule. Let
us focus on a vector vp and say it is a vector in a magnetic field and that
γ(s) is a parameterization of the field line through p, with γ(0) = p and
γ′(0) = vp. Now we transform the entire field by the diffeomorphism f . The
field line through p is transformed to a curve parameterized as f(γ(s)) and
so the vector vp is sent to the corresponding tangent vector of the image,

df(γ(t))
dt

∣∣∣∣
t=0

= ∇f(p)γ′(0) = ∇f(p)vp .

Thus we see that the appropriate transport of the vector vp is its image
under the linear transformation ∇f . Note that under the tangent map a
tangent vector is not rigidly transported, but is acted on by the linear map
that best reflects the stretching, shearing, and rotation that occurs near
the point p as it is transformed by f .

Since the tangent map can act on all tangent vectors at once, a diffeo-
morphism f : M → N induces a tangent map Tf : TM → TN . It also
acts on vector fields, pushing forward a vector field v defined on M to one
defined on N , denoted f∗(v). It is also common to use the pull back f∗(v),
defined by pushing forward by f−1. A vector field v is said to be invariant
under the action of a diffeomorphism f if f∗(v) = v. Given a fluid motion
φt and a vector field v (say a magnetic field), then its push forward or trans-
port under the flow is φt∗(v). The vector field is invariant under the flow or
frozen into the fluid if φt∗(v) = v for all times t.
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As noted above, vector fields and flows go hand in hand. Since a dif-
feomorphism can be viewed as a change of coordinates one would expect
that pushing forward a vector field and then constructing its flow should
give the same result as pushing forward the flow of the original vector field.
More precisely, if u has flow φt and v has flow ψt, we have f∗u = v if and
only if f∗φt = ψt, which by definition says that f ◦ φt ◦ f−1 = ψt.

3.4. LIE DERIVATIVES

As a general notion, the Lie derivative of a structure with respect to the
vector field u measures the rate of change of the structure as it is trans-
ported by the flow of u. Assume now that u and its corresponding flow φt
are steady and that v is also time independent, then the Lie derivative of
v with respect to u is

Luv =
d(φ∗tv)
dt

∣∣∣∣
t=0

.

The Lie derivative is sometimes called “the fisherman’s derivative” since it
corresponds to sitting at one point and measuring the rate of change as the
transported vector field goes by. In Euclidean space a computation yields

Luv = (u · ∇)v − (v · ∇)u . (3)

Although the Lie derivative by definition only measures what is hap-
pening at time t = 0, it also captures other times as well. This is expressed
in the formula

d

dt
(φ∗tv) = φ∗t (Luv) , (4)

which says that at any time the derivative of the pull back of v is the pull
back of the Lie derivative. Equation (4) immediately yields that Luv = 0
if and only if φ∗tv = v, and so the vanishing of the Lie derivative is a
differential condition that implies that v is frozen into the flow of u.

The Lie derivative Luv is sometimes written as the Lie bracket [u,v]
and it has many marvellous algebraic and analytic properties. We mention
just two here. The first is that [u,v] = −[v,u], and so Luv = 0 implies
Lvu = 0. In Fluid Mechanics one usually thinks of a fluid flow with velocity
field u and a different kind of physical object, say a magnetic field v, as
being transported in the flow. But both are vector fields and can be used
to generate flows. If v is frozen in the flow of u, then we can turn v into
a flow and u will be frozen into that. Another nice property is that when
[u,v] = 0, the corresponding flows commute, i.e. φt ◦ ψs = ψs ◦ φt for all t
and s.
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We can also define the Lie derivative of a time independent scalar field
α as

Luα =
d(φ∗tα)
dt

∣∣∣∣
t=0

.

As with vector fields, Luα = 0 means that α is frozen in, i.e. constant on
trajectories of the flow. Since by definition φ∗tα(p) = α(φt(p)), we see that
in Euclidean space, the Lie derivative of a steady scalar field is the same as
its material derivative and is computed as Dα/Dt = (u · ∇)α.

Example 3.2 The prototypical fluid mechanical example of a frozen in
field is the vorticity field ωωω = curl(u) for a steady, incompressible, constant
density, Euler flow. In Euclidean space the vector field satisfies the equation

(u · ∇)u = −∇P , (5)

where we use a capital P for the pressure and assume that the density is
one. Letting Φ = 1

2(u · u) + P be the Bernoulli function, standard vector
identities turn (5) into

∇(Φ) = u× ωωω . (6)

Dotting this by u gives LuΦ = 0 and so Φ is constant on flow lines. Taking
the curl of (6) gives

0 = curl(u× ωωω) , (7)

and vector identities with (3) yield that Luωωω = 0. More can be obtained
by assuming that u × ωωω 6= 0, except at perhaps a finite number of points.
Via (6) this implies that except for a finite number of exceptions any level
set S of Φ (called a Lamb surface) is a two-manifold. Further, (6) says that
ωωω as well as u are tangent to S. Thus restricted to S, since Luωωω = 0, the
flow and the (artificial) flow made from ωωω commute. We can now invoke a
classical theorem of Liouville which says that S has to be a two-torus or
a topological cylinder and the flow of u on it has constant direction and
magnitude (perhaps after a change of coordinates). This is an outline of
a basic piece of the Bernoulli-Lamb-Arnol’d theorem. See [4] and [10] for
more details.

For an unsteady vector field ut, the Lie derivative Lut is by definition
a family of derivatives, one for each t. To compute a member of the family,
one freezes a time and then computes the Lie derivative with respect to
that vector field, thus using the time t streamlines and not the unsteady
flow of ut. If v is steady, then (4) with φt the unsteady fluid motion of ut
still holds and v is frozen in if and only if Lutv = 0 for all t. If vt is also
time dependent then

dφ∗tvt
dt

= φ∗t (
∂vt
∂t

) + φ∗t (Lutvt) = φ∗t (
∂vt
∂t

+ Lutvt) .
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Thus since φt is a diffeomorphism, the condition for vt to be frozen in,
φt∗vt = v0, can be written

∂vt
∂t

+ Lutvt = 0 (8)

for all t.
For more information on the Lie derivative see [25], [3], or [1].

4. Geometry, Metrics, and Connections

4.1. THE NEED FOR ADDITIONAL STRUCTURE

As a fluid flows, subregions of fluid are deformed by the surrounding fluid.
The forces involved in these deformation are, in fact, what determine the
equations that characterize fluid motions. Since the fluid maps are diffeo-
morphisms, all topological properties of the evolving subregions stay the
same. The nature of the deformation lies in changing angles and lengths,
and is therefore geometric. Thus we need a geometric structure on the flow
region.

There are several other ways in which geometric considerations can be
seen entering into mechanics. Most simply, the magnitude of a velocity
vector is required for the kinetic energy. In addition, we have seen that
a velocity vector lies in the tangent bundle, and so the acceleration (the
velocity of the velocity) lies in the tangent bundle of the tangent bundle.
Thus a force vector and the acceleration live in different mathematical
objects, and there is no way to equate them as required by Newton’s second
law.

The acceleration of the fluid is the rate of change of the velocity field
along a trajectory, and is thus a special case of what in Fluid Mechanics
is called the material derivative. For simplicity, let u and v be steady. The
derivative we require is the instantaneous rate of change of one vector field
in the direction of another. In Mathematics this is called the directional
derivative of v in the direction of u and is defined in Euclidean space by

∇uv(p) =
d(v(φt(p))

dt

∣∣∣∣
t=0

.

The chain rule and the advection equation (2) then yield that ∇uv = (∇v)·
u, which is more commonly written in Fluid Mechanics as (u · ∇)v where
∇v is the derivative matrix of v, sometimes called the velocity gradient
2-tensor, and has components ∂vi

∂xj
. To uncover the implicit assumptions in

this calculation let us return to the definition of the derivative,

∇uv(p) = lim
t→0

v(φt(p))− v(p)
t

. (9)
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Thus computing the derivative requires the subtraction of v(φt(p)) and vp.
But note that the vector v(φt(p)) lives in the tangent space attached to
point φt(p) while vp is attached to the point p, and thus they lie in different
vector spaces and their difference has no meaning. When we compute this
limit in Euclidean space we implicitly identify the two tangent spaces by
rigidly transporting one onto the other, but on a manifold there is no natural
way to do this without some additional structure.

So we see that there are, in fact, two geometric structures required
to proceed with the fluid model. The first is a way to measure geometric
quantities like angles and lengths, and the second is a way to compare the
geometry at different points in the fluid body. These needs are fulfilled by
a Riemannian metric and parallel transport, respectively. The infinitesimal
version of parallel transport is the differentiation of one vector field with
respect to another, and it is this process that is most fundamental and has
been entitled a linear connection.

An introduction to Differential Geometry is given in [6], the chapter
in [18] is short and sweet, and the redoubtable [23] is comprehensive and
comprehensible.

4.2. CONNECTIONS AND COVARIANT DERIVATIVES

We now assume that our fluid region has a linear connection. A connec-
tion defines a way of taking derivatives, a process. It is rather algebraic
in character, taking a pair of vectors fields u and v and returning a third
denoted ∇uv. It is required to satisfy properties that make it behave like
the familiar directional derivative in Euclidean space.

− It is linear in the u slot with respect to multiplication by scalar fields,
∇αu+α̂ûv = α∇uv + α̂∇ûv.

− It is linear in the v slot with respect to multiplication by constants,
∇u(rv + r̂v̂) = r∇uv + r̂∇v̂.

− When one multiplies by a scalar field in the v slot it must satisfy the
product rule, ∇u(αv) = α∇uv + (Luα)v.

The connection itself is indicated by the symbol ∇, and ∇uv is called
the covariant derivative of v in the direction of u. The standard connection
on Euclidean space is the usual convective or directional derivative, ∇uv =
(u · ∇)v.

In order to use the connection to compare different points we first con-
nect them with a curve, which we parameterize as γ(s), with s not neces-
sarily the arc length. For simplicity we assume that γ is the integral curve
of a vector field u, i.e. the derivative of the curve γ′(s) at the point γ(s)
is the value of the vector field at that point, γ′(s) = u(γ(s)). Physically
this curve could correspond to a fluid trajectory or perhaps a field line. We
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define the covariant derivative of the vector field v along γ as

Dv
Ds

(s) = ∇uv(γ(s)) .

Note that Dv
Ds is a vector field which is defined along γ. The vector field v is

said to be parallel along γ if Dv
Ds = 0 on the whole curve. If γ starts at the

point p and wp is a tangent vector, there is a unique way to continue wp

to a vector field that is parallel along γ. In this way any tangent vector at
p can be parallel transported to a tangent vector based at γ(s). This process
defines the parallel transport maps Ps from the tangent space at p to the
tangent space at γ(s).

Although we have assumed the existence of a connection and used it to
define parallel transport note that our discussion is consistent in the sense
that using P as the analog of implicit rigid translation in (9) does correctly
compute the derivative because

∇uv(p) =
dP∗sv
ds

∣∣∣∣
s=0

= lim
s→0

P∗sv − v(p)
s

. (10)

It is important to note that the parallel transport of tangent vectors be-
tween two points usually depends on the curve we choose between them.
In fact the only situation in which all parallel transport is independent of
path is when there is no curvature. In spite of this, the limit in (10) is
independent of the choice of curve, and in fact, it may be used to define
∇wpv for a given vector wp, since the limit will not depend on how wp is
extended to a vector field on the whole fluid region.

Given a connection, the acceleration of fluid particles in the steady case
is ∇uu which is, as required, a vector field in the tangent bundle and not
in the tangent tangent bundle.

4.3. RIEMANNIAN METRICS

We also need to quantify such geometric notions as lengths, angles and
volumes. In Euclidean space this is done via the usual inner product
~u · ~v =

∑
uivi, which defines a length as ‖~v‖ = (~v · ~v)

1
2 and an angle using

~v·~u
‖~v‖‖~u‖ . In general, an inner product on a vector space is a rule that takes
two vectors and returns a number. A usual notation is 〈~u,~v〉 or ι(~u,~v).
It is further required that an inner product be linear in each argument,
symmetric ι(~u,~v) = ι(~v, ~u), and positive definite ~v 6= 0 implies ι(~v,~v) > 0.
A linear isomorphism L (i.e. a linear bijection) induces a pull back on a
inner product as L∗(ι)(~u,~v) = ι(L(~u), L(~v)). The isomorphism is said to
be an isometry between the inner products ι̂ and ι if it preserves the inner
product, L∗(ι) = ι̂.
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On a curved manifold the way of measuring lengths and angles vary
from point to point and so the geometry is specified by a Riemannian metric
or metric tensor which is a family of inner products, with one defined on the
tangent space to each point. The metric itself is denoted g, the particular
inner product at the point p is denoted gp (but the subscript is often
suppressed), and its value on a pair of vectors vp and up based at p is
gp(vp,up). A metric is often indicated by its components in a basis as gij ,
or as a line element ds2 = g11 dx

2
1 + g22 dx

2
2 + . . .. Recall from Section 3.3

that a diffeomorphism h : M̂ →M induces a linear isomorphism on tangent
spaces via the tangent maps, Thp : TM̂p → TMh(p). If M has metric g,
then each of these Thp induce a pull back of gp, which in turns creates a
pull back of the entire metric which is denoted h∗g. If M̂ has a metric ĝ,
then h is called an isometry if Th is an isometry on every tangent space, i.e.
if h∗g = ĝ. Isometries are the isomorphisms in the category of Riemannian
manifolds.

The Riemannian metric immediately allows to define the speed, or mag-
nitude of a velocity vector as ‖up‖g = gp(up,up)1/2 and the length of the
curve γ : [a, b]→ B as ∫ b

a
‖γ′(s)‖g ds . (11)

Parallel transport as defined by the connection was introduced as the
analog of rigid translation in Euclidean space. In particular, it should pre-
serve lengths and angles, and so it should preserve the inner products on
tangent spaces. Thus we now require our connection to be compatible with
the metric in the sense that the parallel transport maps, Ps, must induce
an isometry of the tangent spaces at points along the curve.

There are actually many connections that are compatible with a given
metric. To get a unique connection, we also require that the connection be
compatible with the Lie derivative in the same way it is in Euclidean space

Luv = ∇uv −∇vu .

If this condition holds the connection is said to be symmetric or torsion free.
The fundamental theorem of Riemannian geometry states that there is a
unique symmetric connection (called the Riemannian or Levi-Civita con-
nection) that is compatible with a given Riemannian metric. Henceforth
we assume that our fluid region has a Riemannian metric g and ∇ is its
connection.

4.4. VOLUME FORMS

In Euclidean space we get the volume of a box from the product of its side
lengths. A Riemannian metric determines a way of computing length and
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so it also provides a way to compute a volume. As with the inner product
we begin with the notion of a linear volume on IR3. Given three vectors,
the Euclidean volume of the parallelepiped they span is the determinant
of the matrix whose columns are the three vectors. The appropriate notion
of volume generalizes this situation. A volume element σ is a map that
takes three vectors and returns a number, σ(~u,~v, ~w). Since a volume el-
ement is supposed to act like the usual determinant, it is required to be
linear in all three arguments and interchanging two vectors must change
the sign. A linear isomorphism L induces a pull back on a volume element
as L∗(σ)(~u,~v, ~w) = σ(L(~u), L(~v),  L(~w)).

Exercise 4.1 If σ and σ̂ are volume elements on IR3, show that there is a
number r so that σ̂ = r σ, i.e. there is a single r that works for all choices
of triples of input vectors.

A family of volume elements on a manifold, one for each tangent space,
is called a volume form. A diffeomorphism, f , induces a pull back, f∗χ, of
a volume form χ in a manner completely analogous to the pull back of an
inner product. The diffeomorphism preserves the volume form if f∗χ = χ.

To construct a volume form that is compatible with the metric first note
that as a consequence of the exercise, given an inner product on IR3 and an
orthonormal basis b there is a unique volume element which gives it volume
1. Switching exactly two elements in the chosen orthonormal basis yields
a basis b̂ with volume −1. Every other orthonormal basis will be assigned
a volume of 1 or −1, and the two classes are distinguished by whether the
basis in question can be continuously moved to b or to b̂. A Riemannian
manifold has an inner product on each tangent space, and so we may choose
an orthonormal basis on each tangent space and thus obtain a compatible
volume element. Since parallel transport is an isometry on tangent spaces,
it takes orthonormal bases to orthonormal bases. If our volume elements are
to fit together in a nice family, the volume of an orthonormal basis should
not be changed by parallel transport. If the volume elements can be chosen
so this is possible, the manifold is called orientable. The simplest example
of a non-orientable manifold is the two-dimensional Möbious band with the
metric induced from how it lives in IR3. As one traverses the core circle,
an orthonormal basis will come back with one vector flipped, resulting in a
basis assigned the opposite area it had initially.

We now assume that the fluid region is orientable, and for definiteness
we pick a orthonormal basis b on one tangent space and a volume element
which assigns it a volume 1. Then we can find a family of volume elements,
one on each tangent space, which give all parallel translates of b the volume
1. The resulting object is called a Riemannian volume form, and we denote it
µ. Note that switching a pair of elements of the original basis b would result
in the negative of the volume form we have chosen. Applying Exercise 4.1
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on each tangent space shows that for any volume form χ there is a scalar
field r called the density with χ = rµ.

In (11) we computed the length of a curve by integrating the norm of its
tangent vectors as defined by the metric. In the same way we can compute
the volume of a region by integrating the value of the volume form on its
tangent vectors. This is done most succinctly by using the pull back under
its parameterization. We begin with the case where U is a region in IR3

with the Euclidean form µE . Since µE should give the usual volumes, if χ
is a volume form on U with density r we define∫

U
χ =

∫
U
rµE =

∫
U
r(x, y, z) dx dy dz .

Now if V is a region in a manifold that fits into a single coordinate chart
it has a parameterization in terms of a subset of Euclidean space. This is a
diffeomorphism h from some region U in IR3 onto V . If χ is a volume form
on the manifold define ∫

V
χ =

∫
U
h∗χ ,

where to be very careful we must insist that the choice of h was such that∫
U h
∗(µ) > 0 for the Riemannian volume form µ on V , or equivalently that

h∗(µ) = r µE for a positive function r . If the region V is large, chop it up
into smaller pieces that fit into charts and add the integrals.

Volumes and measures are closely related and in many cases one can
pass from one to the other. If µ a Riemannian volume form, the volume
form χ is positive if its density r is a positive function. Given a positive
volume form we can define a measure via integration m(V ) =

∫
V χ on

nice sets V and on nastier sets using limits of nice sets. In a steady fluid
motion if ρ is the mass density, then χ = ρµ is the mass form and the flow
is mass preserving if that form is preserved, φ∗t (χ) = χ. This implies that
the corresponding measure is preserved, φ∗t (m) = m. One advantage which
volume forms have over measures is that they are linear objects and so can
be added, subtracted, differentiated, etc.

Recall that in Euclidean space the Jacobian J(f) of a diffeomorphism
f is the determinant of the Jacobian matrix, i.e. det(∇f). Since the de-
terminant of a linear transformation is equal to the (signed) volume of
the image of the unit cube, and the derivative (the Jacobian matrix) is
the best local linear approximation of the map, we see that the Jacobian
computes the local change in volume under the map f . It follows fairly
easily that for a diffeomorphism f , f∗(µE) = J(f)µE . Thus, in particular,
a fluid motion is incompressible exactly when J(φt) = 1 for all times and
at all points. Similarly, a flow preserves a mass with density ρ if and only if
ρµE = φ∗t (ρµE) = φ∗t (ρ)φ∗t (µE) = φ∗t (ρ)J(φt)µE , which reduces to a scalar
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equation φ∗t (ρ) = J(φt)ρ. The same derivation works if φt is unsteady and
ρ is time dependent in which case the scalar equation is written in the
familiar form ρ = Jρ0.

On the general Riemannian manifold case one defines the Jacobian (with
respect to µ) of the diffeomorphism h as the scalar field J(h) that satisfies
h∗(µ) = J(h)µ, which is to say that J(h) is the density of h∗(µ). This is a
common strategy in coordinate free definitions, a property of an object in
Euclidean space is taken as the coordinate free definition.

4.5. THE LIE, COVARIANT AND MATERIAL DERIVATIVES

Both the Lie derivative and the covariant derivative measure a rate of
change of one vector field with respect to another. In this subsection we
compare them and remark on their generalizations. We put the definitions
side by side

∇uv =
dP∗t (v)
dt

∣∣∣∣
t=0

and Luv =
dφ∗t (v)
dt

∣∣∣∣
t=0

, (12)

and note that the only difference is the way in which the vector field is
pulled back. In the Lie case one pulls back the advected vector field using
the derivative of the flow and so the Lie derivative measures the deforma-
tions of the advected vector field. In contrast, in the covariant derivative
one pulls back using an isometry, and so this derivative does not measure
the deformations during advection, but rather just how the vector field is
changing with respect to the metric. If Luv = 0, it means that the vector
field v is transported to itself, i.e. φt∗v = v, which is a strictly topological
notion, and indeed the Lie derivative requires only Differential Topology.
On the other hand, ∇uv = 0 along a trajectory means that the vector
field is constant along the trajectory as measured by the metric, and indeed
∇uv = 0 is used to define the geometric notion of parallel transport.

In analogy with (12) we may compute the Lie and covariant derivative
of any kind of structure that can be pulled back and subtracted. Such struc-
tures include Riemannian metrics and volume forms. These are examples of
contravariant k-tensors which are families of multilinear maps, one for each
tangent space, which take k tangent vectors as input and return a number
at each point, so as a global object they return a scalar field. Note that
what most mathematicians call a contravariant tensor is called a covariant
tensor by most engineers and physicists, and vice versa. Only one kind of
tensor arises here so we drop the potentially confusing adjective; a Rieman-
nian metric is a 2-tensor and a volume form is a 3-tensor. In general, if τ
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is a tensor, define

∇uτ =
dP∗t (τ)
dt

∣∣∣∣
t=0

and Luτ =
dφ∗t (τ)
dt

∣∣∣∣
t=0

. (13)

In this case the Lie and covariant derivatives have the same dynamical
meaning as in the vector field case. The condition Luτ = 0 says that φ∗t (τ) =
τ and so τ is frozen into the flow. On the hand, ∇uτ = 0, means that from
the point of view of the metric, τ is not changing along trajectories.

Example 4.2 The Riemannian connection associated with a metric g was
required to have the property that each Ps is an isometry. This says that
P∗t g = g, or that ∇ug = 0 for any u. In contrast, Lug = 0 is a very rare
situation. It says that the metric is invariant under the flow, and so each
φt is an isometry. Such a u is called a Killing field for the metric and in
Euclidean space with the usual metric any flow of a Killing field is either a
rigid rotation or a translation, or composition of these.

A scalar field α is a 0-tensor and in this case the two derivatives are
equal, Luα = ∇uα. This is because the pull backs are the same; an advected
scalar field does not feel the local deformations during the evolution.

The Lie and covariant derivatives behave differently when transported
by a diffeomorphism h. The Lie derivative satisfies h∗(Luv) = Lh∗uh∗v.
This is sometimes called the “naturalness” of the Lie derivative, and ex-
presses the fact that the definition of the Lie derivative requires only Dif-
ferential Topology and so is preserved by a diffeomorphism. Thus the same
definition works before and after the action of h, or in symbols h∗(L) = L.
On the other hand, the covariant derivative depends on the metric, and so
h∗(∇) is the Riemannian connection ∇̂ of the pulled back metric h∗(g), and
so h∗(∇uv) = ∇̂h∗uh∗v.

In Euclidean space the material derivative with respect to u is the oper-
ator D

Dt = ∂
∂t + (u · ∇) and it computes the rate of change of say a time

dependent vector field v along the flow as

Dv
Dt

(φt(p)) =
∂v(φt(p), t)

∂t
. (14)

The obvious generalization using the covariant derivative D
Dt = ∂

∂t + ∇u

maintains this meaning. Thus, for example, the acceleration of a fluid par-
ticle under the perhaps unsteady velocity field u is given as usual by Du

Dt ,
and for a perhaps time dependent scalar field the familiar condition Dα

Dt = 0
says that the scalar field is passively transported.
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4.6. DIV, GRAD, CURL AND THE LAPLACIAN

We may now give coordinate free definitions of the standard operations on
velocity fields. In Euclidean space these can be built out of the velocity
gradient tensor, ∇u = (∂ui/∂xj). Its generalization is the covariant deriva-
tive of u, also denoted ∇u. In the previous subsections we took covariant
derivatives in the direction of u. To define the derivative of u itself recall
that a connection is required to be linear over scalar fields in the direction
in which one is differentiating, i.e. ∇vu is linear in the v slot. Thus ∇u can
be defined as the linear transformation on each tangent space which inputs
a vector vp and outputs the rate of change of u in that direction ∇vpu.
Thus ∇u(v) means ∇vu.

In a similar vein, given a scalar field α its derivative is the linear func-
tional that inputs a vector vp and outputs the rate of change of α in that
direction ∇vpα. Since the notation ∇α has a commonly accepted meaning
as a vector field, the linear functional is called dα, and so dα(vp) = ∇vpα.
The gradient vector field ∇α is defined using the metric as the unique vector
field that satisfies dα(vp) = g(∇α,vp) for all vectors vp. This means that
∇α is the direction of maximum increase of α as measured by the metric, in
accord with the usual situation in Euclidean space where ∇vpα = vp · ∇α.

Since∇u gives a linear transformation on each tangent space, its trace is
independent of the choice of basis and so we may define div(u) = trace(∇u).
As in the Euclidean case the divergence measures the infinitesimal rate of
change of volumes as they are transported which is expressed by Luµ =
div(u)µ, where µ is the Riemannian volume form. Thus as usual, φt is
incompressible exactly when div(u) = 0. If the perhaps time dependent
density is ρt, then the mass form is ρtµ, and conservation of mass says that
φ∗t (ρtµ) = ρ0µ. Thus using the analog of (8) for tensors we have that

0 =
∂(ρtµ)
∂t

+ Lu(ρtµ) .

Now Leibnitz’ rule for the Lie derivative says that Lu(ρtµ) = (Luρt)µ +
ρtLuµ = (∇uρt)µ + ρt div(u)µ, using the definition of the divergence and
the equality of the Lie and covariant derivatives for scalar fields. Since µ is
time independent ∂(ρtµ)

∂t = ∂ρt
∂t µ. Equating the coefficients of µ and using

the definition of the material derivative yields the mass conservation equation
or continuity equation

Dρt
Dt

+ ρtdiv(u) = 0 . (15)

Note that the preceding derivation did not require u to be steady.
In Euclidean space the symmetric and skew symmetric parts of ∇u

yield the deformation and rotation tensor. To formulate the generalization
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we require a transpose. Recall that in IR3, the transpose of a linear transfor-
mation A with respect to inner product ι is the unique linear transformation
AT that satisfies ι(AT (~v), ~w) = ι(~v,A(~w)). Thus working with the metric g
we can define (∇u)T as satisfying g((∇u)T (vp),wp) = g(vp,∇u(wp)) on
each tangent space.

We then define the symmetric part of ∇u as D(u) = 1
2(∇u + (∇u)T )

and the skew symmetric part as Ω(u) = 1
2(∇u − (∇u)T ), and so ∇u =

D(u)+Ω(u). Since D is symmetric, it has three orthogonal principal direc-
tions and D diagonalizes in that basis. The diagonal elements represent the
infinitesimal deformation rates in each direction and so D is called the defor-
mation tensor (although at this point it is formally a linear transformation).
In Euclidean space Ω is related to ωωω = curl(u) by the formula

Ω(~v) =
1
2
ωωω × ~v , (16)

for any vector ~v, and so Ω is sometimes called the rotation tensor.
We can find our way to the covariant definition of the curl by dotting

both sides of (16) by ~w, yielding

~w · Ω(~v) =
1
2
~w · (ωωω × ~v) =

1
2

det(~w,ωωω,~v) , (17)

where we have used the standard identity connecting the triple scalar prod-
uct and the determinant of the matrix whose columns are the vectors. All
of the terms in (17) have a covariant generalization, so in a now familiar
move we define curl(u) as the unique vector field ωωω satisfying

g(~w,Ω(~v)) =
1
2
µ(~w,ωωω,~v) . (18)

Since the metric quantifies deformation, one would expect a close rela-
tionship between the deformation tensor and the metric. Since the metric
is a 2-tensor, we will change D from a linear transformation to a 2 tensor.
There is a standard way to do this using the metric called lowering the
indices or the [ operator. The D̃(u) which is associated with D(u) is the
unique 2-tensor D̃(u) with D̃(u)(wp,vp) = g(D(u)(wp),vp). The relation-
ship of the deformation tensor and the metric is expressed by Lug = 2D̃(u),
which says that D̃(u) exactly measures how the metric is deformed as it is
advected by the flow. If we also turn Ω into a 2-tensor we find that the curl
satisfies µ(wp, curl(u),vp) = 2Ω̃(u)(wp,vp).

The Laplacian of a scalar field is covariantly defined as4(α) = div(∇α).
Since the first derivative of a vector field requires the use of a connection
one might suspect that the Laplacian of a vector field would require yet
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more structure. This is fortunately not the case. We can use (13) to define
the covariant derivative of ∇u in a given direction. Treating the result as
a function of the direction we get an object denoted (∇∇)u which takes
two vectors as input and gives another as output. The Laplacian of u is the
trace of this object, 4u = trace((∇∇)u). To be clear on the type of trace
we are taking, if we choose an orthonormal basis, ei, with respect to the
metric on each tangent space, then 4u =

∑
i(∇∇)u(ei, ei).

The Laplacian we have just defined is sometimes called the analyst’s
Laplacian. The topologist’s Laplacian is defined using the (negative of the)
analog of the Euclidean space formula 4u = ∇(div(u))− curl curl u. After
a sign switch the two Laplacians differ by the Ricci curvature.

Differential forms are the other common way to give coordinate free
definitions of the standard vector calculus notions. Both points of view are
important and have their virtues: forms work well with integration and are
directly connected to the underlying topology, but the covariant derivative
is most naturally related to velocity fields. The two methods are intimately
connected and we have, in fact, already encountered the 1-form dα, the
2-form Ω̃, and the three form µ. Forms were not explicitly discussed here
only because space and time limitations demanded the most direct path to
the goal. The reader is urged to consult [9], [25], [2], [3] or [1].

5. Equations

We now have the mathematical equipment to bring forces into the model
and state the basic dynamical equations of Fluid Mechanics. This is famil-
iar material for fluid mechanicians, but for completeness we give a brief
summary. Assume that there are no external forces and so the only forces
to consider are internal, the force that the fluid body exerts on a subregion
across its boundary. The force per unit area on the bounding surface is
the stress and its exact form is encapsulated in the existence and proper-
ties of the Cauchy stress tensor. The usual derivation of the basic dynamic
equations in Euclidean space invokes Newton’s laws to say that the rate of
change of momentum of a patch of fluid is equal to the total surfaces forces
on it. If it is assumed that the only stresses are normal to the bounding
surface, one obtains Euler’s equation

ρ(
∂u
∂t

+∇uu) = −∇P . (E)

If tangential components of the stress are included one obtains the Navier-
Stokes equation

ρ(
∂u
∂t

+∇uu) = −∇P + µ̄4u . (NS)
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In these equations P is the pressure, ρ is the mass density and µ̄ is the
viscosity (not a volume form!). Note that all the operations involved in the
equations have been covariantly defined. However, there are serious and
subtle problems in trying to formulate the usual derivations of (NS) on a
manifold. We refer the reader to [16] for a careful exposition and merely
remark that the Laplacian in (NS) is the analyst’s Laplacian.

Depending on the relative importance of viscosity in the fluid system
under study either (E) or (NS) is adapted as the basic dynamical equation.
The appropriate boundary conditions are slip and no slip, respectively. For a
complete system in which all variables are determined additional equations
must be added. In the most common situations it can be assumed that
the viscosity is constant throughout the fluid, mass is conserved, and the
fluid is incompressible. After inclusion of the mass conservation equation
(15), incompressibility is equivalent to Dρ

Dt = 0, or that the density of a
particle remains constant as it is transported. The simplest compressible
systems use thermodynamic considerations to justify the assumption that
the pressure and the density are functionally dependent.

There are three obligatory remarks to be made. The first is that all our
mathematical modelling would be meaningless if it were not for the fact that
the resulting models and equations give results that agree extremely well
with experimental data. The second is that the existence-uniqueness theory
of the Navier-Stokes and Euler equations is still far from being understood.
The third is that what’s in this paper just sets the stage; the real action is
the understanding and prediction of fluid behavior.

One advantage of having defined all operations covariantly is that chang-
ing coordinates or regions with a diffeomorphism h : B → B̂ preserves the
property of being a solution to a system of fluid equations. More precisely,
if u satisfies a system on B with respect to the metric g, then h∗u satisfies
the same system on B̂. That’s the good news. The bad news that the op-
erations in the equations on B̂ such as ∇ and 4 must be defined in terms
of the metric h∗g which may not be the metric which you care about. This
begs a question:

Question 5.1 Is there a physical meaning to doing Fluid Mechanics with
a general Riemannian metric?

We only hazard a few remarks. If there is a general physical interpre-
tation of a curved metric, it cannot involve an intrinsic property of the
fluid because everything in the fluid is advected, and the metric (at least
as developed here) stays fixed on the manifold. There are few cases where
it is clear that fluid flows over a curved space. One is the surface of the
earth. Another is in very large scale fluid mechanical models in Cosmology
where one can need to take into account the curvature of space-time. Also
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note that changing from Euclidean into curvilinear, non-orthogonal coor-
dinates forces one to work with the push forward of the Euclidean metric.
This is a rather special metric, however, being by definition isometric to
the Euclidean one and therefore lacking curvature. The last remark comes
from the philosophy of Mathematics described in the introduction: by un-
derstanding fluid mechanics in the most general context in which it makes
sense, one gains new insights into the particular cases of interest.
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