The discrete Fourier transform sends the data into discrete frequency space.

- If \(x_{0}, \ldots, x_{N-1} \) is the data vector \(x \), then \(\hat{x} = DFT(x) = F_{x} \) where \(F_{ij} = \frac{1}{\sqrt{N}} e^{-2\pi i j k/N} \).

- With \(c_{0} = e^{\frac{2\pi i}{N}} \), we have

\[
\hat{x}_{j} = \sum_{k=0}^{N-1} x_{k} e^{-2\pi i j k/N}
\]

In formulas,

\[
x_{j} = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x_{k} e^{2\pi i j k/N}
\]

- The \(x_{j} \) are usually complex numbers, so we plot \(|x_{j}|^{2} \) vs \(j \).

Example
Proof:

(a) \[\hat{x}_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x_k e^{-2\pi i k j/N} \]

Using the formula for the DFT.

(b) \[x_0 = \frac{1}{N} \sum_{k=0}^{N-1} x_k \]

and so is real.

Fact 1: If \(x \) is a real data vector, \text{\(\hat{x} \)} is even.

(a) \[\hat{x}_j = \hat{x}_{N-j} \]

(b) \[\hat{x}_j = \hat{x}_{N-j} \]

Note: Be symmetry about \(\frac{N}{2} \) (assumed new \(k \) is even)
We now want to connect the DFT to the amplitudes of various frequencies present in the data.

The key is the formula for the inverse DFT.
\[x_j = \sqrt{\frac{\mu}{\pi}} \]

\[f_j(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} & \text{if } j = 1, 2, \ldots, N \end{cases} \]

\[W_{x_k} = \sum_{k=0}^{\infty} r_k e^{2\pi i k + j} \]

where \(\pi = 3.14159 \) is a sample point.

So let \(y_{jk} = e^{2\pi i k t_j} \) where \(j = 1, 2, \ldots, N \) and \(k = 0, 1, 2, \ldots \). Then

\[y_{jk} = \begin{cases} e^{2\pi i k t_j} & \text{if } j = 1, 2, \ldots, N \end{cases} \]

for \(j = 0, 1, \ldots, p-1 \)

where \(t_j = \frac{1}{\mu} \) is the time.

The formula above sees for \(\mu > 1 \) as

\[f(x_j) = y_j \]

So \(y_j \) interpolates the data exactly.
Theorem 2: If \(x = x_0, x_1, \ldots \) is a data stream (time series) sampled at the points \(t_0, t_1, \ldots \) with \(t_j = j/n \) then

\[
Y(t) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} x_k e^{2\pi i k t}
\]

interpolates the data.

- For this reason since power is amplitude squared the collection \(|\hat{x}_k|^2 \) (or \(\frac{1}{n} |Y_k|^2 \)) is called the power spectrum.

- Recall \(x_{n-j} = \hat{x}_j \) so \(\|X_{n-j}\|^2 = \|\hat{x}_j\|^2 \).
Theorem 3

If $\hat{X} = \text{DFT}(x)$ then

$$\sum_{k=0}^{n-1} |\hat{X}_k|^2 = \sum_{k=0}^{n-1} |X_k|^2$$

Proof: Recall F is unitary and unitary matrices preserve inner products and thus norms so

$$\sum_{k=0}^{n-1} |\hat{X}_k|^2 = \|x\|_2^2 = \|Fx\|_2^2 = \|x\|_2^2 = \sum_{k=0}^{n-1} |X_k|^2$$
We get that

\[
\sum_{k=1}^{n} \frac{3}{x + 7k} \leq \frac{3}{x - 1} + \sum_{k=1}^{n} \frac{1}{x + 7k}
\]

So, in theorem 2, we substitute

\[
\frac{3}{x - 1} + \sum_{k=1}^{n} \frac{1}{x + 7k} = 1 \quad (7)
\]

For \(0 < x \leq \frac{3}{2} \).

If valued at our same points \(\tau = y \).

There is a relation in terms of the associated frequencies.

In addition to the relation \(\frac{1}{x-k} = 1 \times \frac{1}{x} \).
Since \(y_0(t) = 1 \)

\[
y(t) = \frac{1}{N} \left[y_0 + \sum_{k=1}^{\frac{N}{2}-1} \left(\hat{x}_k y_k(t) + \hat{x}_k y_{-k}(t) \right) + \hat{x}_{\frac{N}{2}} y_{\frac{N}{2}}(t) \right]
\]

So associated with frequency \(k \), \(y_k(t) = \cos 2\pi kt + \sin 2\pi kt \)

we have amplitudes \(\left| \hat{x}_k \right|^2 + \left| \hat{x}_{-k} \right|^2 = 2 \left| \hat{x}_k \right|^2 \)

This leads to the periodogram
\[P_0 = \frac{1}{\nu} \left| x_0 \right|^2 \]
\[P_k = \frac{2}{\nu} \left| \hat{x}_k \right|^2 \quad k = 1, \ldots, \frac{\nu}{2} - 1 \]
\[P_{\nu/2} = \frac{1}{\nu} \left| x_{\nu/2} \right|^2 \]

[DEMO]

This is the first step in Power Spectrum estimation. And there are many other considerations:
- Sampling rate, Nyquist frequency
- Averaging spectrum on overlapping windows
- Etc.
Now $N/4$ still has complex functions in it.

To simplify further, notice that for any complex number z, $z + \bar{z} = 2 \text{Re}(z)$ ($\text{Re} = \text{real part}$)

\[
\sum_{N} x_k \psi_k(z) + \sum_{N} \psi_k(\bar{z}) = 2 \text{Re}(\sum_{N} x_k \psi_k(z))
\]

\[
\Rightarrow x_k \psi_k(z) + \bar{x}_k \psi_k(\bar{z}) = 2 \text{Re}(\sum_{N} x_k \psi_k(z))
\]

\[
= 2 \text{Re}((a_k + ib_k)(\cos 2\pi k t + i\sin 2\pi k t))
\]

\[
= 2[a_k \cos 2\pi k t - b_k \sin 2\pi k t]
\]

where $x_k = a_k + ib_k$

We also have a term $\sum_{N} x_{\frac{N}{2}} \psi_{\frac{N}{2}}(z)$

\[
= \sum_{N} x_{\frac{N}{2}} \left(\cos \frac{N \pi}{2} + i \sin \frac{N \pi}{2}\right)
\]

Since the data is real and $\sum_{N} x_{\frac{N}{2}}$ is real (FACT 1) we just need $\sum_{N} x_{\frac{N}{2}} \cos (N \pi t)$ for this term. So in the end

\[
\sum_{N} x_{\frac{N}{2}} \cos (N \pi t)
\]
Theorem: Given real data \(\{x_0, x_1, \ldots, x_{N-1}\} \)

sampled at \(\{t_0, t_1, \ldots, t_{N-1}\} \) with \(t_j = j/N \) and

Then if \(\hat{x}_k = a_k + ib_k \)

\[
\hat{\nabla} = \frac{1}{\sqrt{N}} \left[\hat{a}_0 + 2 \sum_{k=1}^{N/2-1} \hat{a}_k \cos 2\pi kt - b_k \sin 2\pi kt \right] + \frac{a_{N/2}}{2} \cos \pi t
\]

Interpolates the data, \(\hat{\nabla}(t_j) = x_j \) for \(j = 0, \ldots, N-1 \)

- Notice that \(\hat{\nabla}(t) \) is a real function now.
- To get the best order \(M \) approximation in least squares, you truncate the sum and eliminate the \(N/2 \)-term.