1. Let $f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2} x_{2}, x_{1} x_{2}^{3}\right), g\left(y_{1}, y_{2}\right)=\left(\sin \left(y_{1} y_{2}\right), y_{1}+y_{2}\right)$, and $h=g \circ f$. Use the matrix chain rule to compute the matrix derivative $D h$. Your answer must be in terms of x_{1}, x_{2} and contain no y_{1} or y_{2} and be a single matrix.
2. Consider the net diagram shown in Figure 1 on the next page. The hidden layer has activation function σ (unspecified) and no activation function on the output layer.
(a) Write the formula for the input-output function $F(\vec{x}, \eta)$.
(b) Recall that the parameters are $\eta=\left(w_{11}, w_{21}, w_{12}, w_{22}, b_{1}, b_{2}, \gamma_{1}, \gamma_{2}\right)$. Write the formula for the derivative (or gradient) of F with respect to the parameters η. Your answer will have terms containing η^{\prime}.
3. This problem concerns finding the least squares solution to $A \vec{x}=\vec{b}$. There are both theory and computational questions. For the computational questions your answer must include your code and the results of running it.
(a) Let $\Phi(\vec{x})=\|A \vec{x}-\vec{b}\|_{2}^{2}$. Compute $\nabla \Phi$ and $H \Phi$.
(b) Let A be a full rank $(m \times n)$-matrix with $m \geq n$. Show (for example using the SVD) that $A^{T} A$ is symmetric, positive definite. (We also know it is invertible).
(c) Using (a) and (b), show that under the conditions on A given in (b) there is a unique critical point for $\nabla \Phi$ and that critical point is a local minimum and thus a global minimum.
(d) As on the exam, let

$$
A=\left(\begin{array}{ll}
2 & 2 \\
2 & 4 \\
2 & 2 \\
2 & 4
\end{array}\right) \text { and } \vec{b}=\left(\begin{array}{c}
2 \\
4 \\
4 \\
-2
\end{array}\right)
$$

Write a program that implements gradient descent for $\Phi(\vec{x})=\|A \vec{x}-\vec{b}\|_{2}^{2}$ with initial vector $\vec{x}_{0}=(1,1)^{T}$ and a given step size h. It should include a condition so that it does not compute more than 500 iterates for reasons that will become clear.
(e) We know that the correct solution is

$$
\vec{x}_{*}=\binom{2.5}{-1}
$$

Using $\left\|\vec{x}_{n}-\vec{x}_{*}\right\|_{2}<10^{-3}$ as a halting condition and $h=.01$, what is the final value of n and $\left\|\nabla \Phi\left(x_{n}\right)\right\|_{2}$?
(f) Repeat part (e) for $h=.013, .015, .017$, and .019 .
(g) Explain your results and what they say about using gradient descent.

no activation on
\uparrow
actuation $=\sigma$
(unspecified)

