\(D_f(x_1, x_2) = \begin{bmatrix} 2x_1 x_2 & x_1^2 \\ x_2^3 & 3x_1 x_2^2 \end{bmatrix} \)

\(D_g(y_1, y_2) = \begin{bmatrix} \cos(y_1 y_2) y_2 & \cos(y_1 y_2) y_1 \\ 1 & 1 \end{bmatrix} \)

\[
\begin{align*}
h = g \circ f & \Rightarrow D_h(x) = Dg(f(x)) \cdot Df(x) \\
& = \begin{bmatrix} \cos(x_1^3 x_2^4) x_1 x_2^3 & \cos(x_1 x_2^7) x_1 x_2^2 \\ 1 & 1 \end{bmatrix} \end{align*}
\]

\[
\begin{align*}
& = \begin{bmatrix} 2x_1 x_2 & x_1^2 \\ x_2^3 & 3x_1 x_2^2 \end{bmatrix} \\
& = \begin{bmatrix} 3x_1^2 x_2 \cos(x_1^3 x_2^4) & 4x_1^3 x_2^3 \cos(x_1 x_2^7) \\ 2x_1 x_2 + x_2^3 & x_1^2 + 3x_1 x_2^2 \end{bmatrix}
\end{align*}
\]
$2 \begin{align*}
F(x, y) &= \gamma_1 \sum \left(w_{11} x_1 + w_{21} x_2 + b_1 \right) \\
&\quad + \gamma_2 \sum \left(w_{12} x_1 + w_{22} x_2 + b_2 \right) \\
\n\nabla_{\boldsymbol{\eta}} F &= \begin{bmatrix}
\frac{dF}{dw_{11}} & \frac{dF}{dw_{12}} & \frac{dF}{dw_{21}} & \frac{dF}{dw_{22}} & \frac{dF}{db_1} & \frac{dF}{db_2} & \frac{dF}{d\eta_1} & \frac{dF}{d\eta_2}
\end{bmatrix}
\n\text{Letting} \\
\eta_1 &= w_{11} x_1 + w_{21} x_2 + b_1 \\
\eta_2 &= w_{12} x_1 + w_{22} x_2 + b_2 \\

\frac{dF}{dw_{11}} &= \gamma_1 \sum \left(\frac{d}{d\eta_1} \right) x_1 \\
\frac{dF}{dw_{12}} &= \gamma_2 \sum \left(\frac{d}{d\eta_2} \right) x_1 \\
\frac{dF}{dw_{21}} &= \gamma_1 \sum \left(\frac{d}{d\eta_1} \right) x_2 \\
\frac{dF}{dw_{22}} &= \gamma_2 \sum \left(\frac{d}{d\eta_2} \right) x_2 \\
\frac{dF}{db_1} &= \gamma_1 \sum \left(\frac{d}{db_1} \right) \\
\frac{dF}{db_2} &= \gamma_2 \sum \left(\frac{d}{db_2} \right)
\end{align*}$
\[
\frac{\partial F}{\partial \beta_1} = \gamma_1^2, \quad \frac{\partial F}{\partial \beta_2} = \gamma_2^2
\]
\[
\frac{\partial F}{\partial \gamma_1} = \gamma_1, \quad \frac{\partial F}{\partial \gamma_2} = \gamma_2
\]

3. \(\phi(x) = \|Ax-b\|_2^2 = (Ax-b)^T(Ax-b) \)

\[
= (x^TA^T-b^T)/Ax-b) = x^TA^TAx - b^TAx
\]

- \(x^TA^Tb + b^Tb \)

Now notice \(b^TAx = (x^TA^Ty)^T \) and \(x \) and \(y \) are both numbers, so \(b^TAx = x^TA^Ty \) so

\(\phi(x) = x^TA^TAx - 2b^TAx + b^Tb \)

as we computed in a previous homework.

4. \(\nabla \phi(x) = 2ATAx - 2b^TA \)

and \(H \phi(x) = 2ATA \)

5. \(A = U \Sigma V^T, \quad \Sigma = \text{diag} \{ \Sigma_1, \ldots, \Sigma_n \} \)

with \(\Sigma_n > 0 \) since \(A \) is full rank.

So \(A^TA = V \Sigma^T U^T U \Sigma V \)

\[
= V \Sigma^2 V^{-1}
\]
So the eigenvalues of A^TA are $\lambda_1, \ldots, \lambda_n$ all > 0, so A^TA is post-def.

(c) Critical points are when

$$0 = D\Phi(x) = 2A^TAx - 2b^TA$$

or when $A^TAx = b^TA$. But we know A^TA is invertible, so the unique 50 and thus A^TA is invertible, so the unique so is unique and thus A^TA is invertible, so the unique so is unique and thus A^TA is invertible, so the unique so is unique and thus A^TA is invertible, so the unique so is unique and thus A^TA is invertible, so the unique so is unique.

Now at that point, and every open point, $H(\Phi) = 2A^TA$ which is post-def.

So by the 2nd deriv test, x_0 is a local minimum. There are no other critical points and thus no other local min, so x_0 is the global min.

(3g) Up a a point, longer jumps get you to the minimum with less steps. However, if the magnitude $h\nabla\Phi(x)$
is too large, you jump across the critical point to a place where \(h \Delta \phi(x_{\text{min}}) \) is even larger.

And then you zig zag off to infinity.

So the choice of the value of \(h \) is crucial in using gradient descent and as mentioned in lecture there are many sophisticated tools for choosing and altering learning rate.