A is an $M \times N$ data array. Recall $\hat{A}=\operatorname{DFT} 2(A)$ is the $M \times N$ array given for $m=0, \ldots, M-1, n=$ $0, \ldots, N-1$ by

$$
\hat{A}_{m, n}=\frac{1}{M N} \sum_{k=0}^{M-1} \sum_{\ell=0}^{N-1} A_{k, l} \omega_{M}^{-k m} \omega_{N}^{-\ell n}
$$

where

$$
\omega_{M}=e^{2 \pi i / M} \quad \omega_{N}=e^{2 \pi i / N}
$$

1. Assume that the data array A contains just real numbers. Show that for $0<m<M, 0<n<N$ that

$$
\hat{A}_{M-m, N-n}=\overline{\hat{A}_{M-m, N-n}}
$$

2. Compute (by hand) \hat{A} for

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

Note that this is easier using the matrix version of DFT2 we derived in class.
3. Assume the data array A is separable in the sense that there is a M-dimensional vector \vec{g} and an N-dimensional vector \vec{h} so that $A_{m, n}=g_{m} h_{n}$ for all m, n. Show that $\hat{A}_{m, n}=\hat{g}_{m} \hat{h}_{n}$ for all m, n where $\hat{g}=\operatorname{DFT} 1(\vec{g})$ and $\hat{h}=\operatorname{DFT} 1(\vec{h})$.
4. For M-dimensional column vector \vec{g} and an N-dimensional column vector \vec{h} their outer product is the $M \times N$ matrix A with $A_{m, n}=g_{m} h_{n}$, so more succinctly, $A=\vec{g} \vec{h}^{T}$, with the T indicating transpose. Using the result of the previous question, show that if $A=\vec{g} \vec{h}^{T}$ then $\hat{A}=\hat{g} \hat{h}^{T}$

