HW 11 • SPRING $2020 \bullet$ PROF. BOYLAND

1. Assume $\vec{q}_{1}, \ldots, \vec{q}_{N}$ is an orthonormal basis for \mathbb{C}^{N} and \vec{v} has expansion $\vec{v}=\sum_{i=1}^{N} \alpha_{i} \vec{q}_{i}$. The order k truncation of \vec{v} is $\vec{v}^{(k)}=\sum_{i=1}^{k} \alpha_{i} \vec{q}_{i}$. Show that the least squares error in using $\vec{v}^{(k)}$ is

$$
\left\|\vec{v}-\vec{v}^{(k)}\right\|_{2}^{2}=\sum_{i=k+1}^{N}\left|\alpha_{i}\right|^{2}
$$

2. Let V be the vector space of all real polynomials on $[-1,1]$ with inner product

$$
\langle p, q\rangle=\int_{-1}^{1} p(t) q(t) d t
$$

Starting with the basis $\left\{1, t, t^{2}, \ldots\right\}$, compute the first three orthonormal polynomials using the Gram-Schmidt process. (These are called the first three Legendre polynomials.)
3. The $N^{t h}$ root of unity is $\omega_{N}=e^{2 \pi i / N}$.
(a) Show that $\omega_{N}^{N}=1$ and $\left|\omega_{N}\right|=1$ and also for any integer $k,\left(\omega_{N}^{k}\right)^{N}=1,\left|\omega_{N}^{k}\right|=1$, and $\bar{\omega}^{k}=\omega^{-k}$. .
(b) For any complex number z, show that

$$
(1-z)\left(1+z+z^{2}+\ldots z^{N-1}\right)=1-z^{N}
$$

(c) For $j=0, \ldots, N-1$, let \vec{q}_{j} be defined by

$$
\vec{q}_{j}=\frac{1}{\sqrt{N}}\left[1, \omega_{N}^{j}, \omega_{N}^{2 j}, \ldots, \omega_{N}^{(N-1) j}\right]^{T} .
$$

So, for example,

$$
\vec{q}_{0}=\frac{1}{\sqrt{N}}[1,1,1, \ldots, 1]^{T}
$$

and

$$
\vec{q}_{3}=\frac{1}{\sqrt{N}}\left[1, \omega_{N}^{3}, \omega_{N}^{6}, \ldots, \omega_{N}^{(N-1) 3}\right]^{T} .
$$

Show using parts (a) and (b) that $\left\{\vec{q}_{0}, \vec{q}_{1}, \ldots, \vec{q}_{N-1}\right\}$ is an orthonormal basis for \mathbb{C}^{N}. Note: the index of this basis is traditionally $0,1, \ldots, N-1$ to keep the formulas simpler.
4. Let f on $[-\pi, \pi]$ be given by

$$
f(t)= \begin{cases}1 & \text { if }|t|<\pi / 4 \\ 0 & \text { if }|t| \geq \pi / 4\end{cases}
$$

Compute (by hand) the series expansion in $L^{2}([-\pi, \pi])$ of f with respect to the Fourier orthonormal basis

$$
\left\{\frac{e^{i n t}}{\sqrt{2 \pi}}\right\} \text { with } n=0, \pm 1, \pm 2, \ldots
$$

