HW 1 • SPRING 2020 • PROF. BOYLAND

1. (a) Give a subset of the plane, \mathbb{R}^{2}, that is closed under vector addition and subtraction, but not under scalar multiplication.
(b) Give a subset of the plane, \mathbb{R}^{2}, that is closed under scalar multiplication but not under vector addition and subtraction.
2. (a) Show that the set of all vectors $\vec{x}=\left[x_{1}, x_{2}, x_{3}\right]^{T}$ such that

$$
2 x_{1}+3 x_{2}-5 x_{3}=0
$$

is a subspace of \mathbb{R}^{3}.
(b) Prove or disprove: the set of all vectors $\vec{x}=\left[x_{1}, x_{2}, x_{3}\right]^{T}$ such that

$$
2 x_{1}+3 x_{2}-5 x_{3}=7
$$

is a subspace of \mathbb{R}^{3}.
3. If $V \subset \mathbb{R}^{n}$ is a subspace, define V^{\perp} as all the vectors in \mathbb{R}^{n} orthogonal to every vector in V, so

$$
V^{\perp}=\left\{\vec{x} \in \mathbb{R}^{n}: \vec{x} \cdot \vec{v}=0 \text { for all } \vec{v} \in V\right\} .
$$

Show that V^{\perp} is a subspace.
4. Give an example where a linear combination of three nonzero vectors in \mathbb{R}^{4} is the zero vector. Then write your example in the form $A \vec{x}=\overrightarrow{0}$.

