- 1. (a) Give a subset of the plane, \mathbb{R}^2 , that is closed under vector addition and subtraction, but not under scalar multiplication.
 - (b) Give a subset of the plane, \mathbb{R}^2 , that is closed under scalar multiplication but not under vector addition and subtraction.
- 2. (a) Show that the set of all vectors $\vec{x} = [x_1, x_2, x_3]^T$ such that

$$2x_1 + 3x_2 - 5x_3 = 0$$

is a subspace of \mathbb{R}^3 .

(b) Prove or disprove: the set of all vectors $\vec{x} = [x_1, x_2, x_3]^T$ such that

$$2x_1 + 3x_2 - 5x_3 = 7$$

is a subspace of \mathbb{R}^3 .

3. If $V \subset \mathbb{R}^n$ is a subspace, define V^{\perp} as all the vectors in \mathbb{R}^n orthogonal to every vector in V, so

$$V^{\perp} = \{ \vec{x} \in \mathbb{R}^n : \vec{x} \cdot \vec{v} = 0 \text{ for all } \vec{v} \in V \}.$$

Show that V^{\perp} is a subspace.

4. Give an example where a linear combination of three nonzero vectors in \mathbb{R}^4 is the zero vector. Then write your example in the form $A\vec{x} = \vec{0}$.