HW $2 \bullet$ SPRING $2020 \bullet$ PROF. BOYLAND

1. Let

$$
A=\left(\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right)
$$

(a) Compute (by hand) the LU decomposition of A.
(b) Check you answer by multiplying $L U$ and confirm you get A.
(c) Using the LU decomposition, what is $\operatorname{det}(A)$?
(d) Using the LU decomposition, solve

$$
A \vec{x}=\left(\begin{array}{c}
3 \\
16 \\
-10
\end{array}\right)
$$

2. Your answer must include your code and the results of running it.
(a) For L an $(n \times n)$ lower triangular matrix whose diagonal elements are all non-zero, write a program using forward substitution that will solve the equation $L \vec{x}=\vec{b}$.
(b) Create the (5×5) matrix L with $L_{i, j}=i+j^{2}$ for $i \geq j$ and $L_{i, j}=0$ otherwise. Create the vector \vec{b} with $b_{i}=i^{2}$ for $i=1, \ldots, 5$. Use your program to numerically solve the equation $L \vec{x}=\vec{b}$.
(c) Verify your answer is correct by multiplying L by \vec{x} numerically and confirm you get \vec{b}.
