## HW $3 \bullet$ SPRING $2020 \bullet$ PROF. BOYLAND

1. Let

$$
A=\left(\begin{array}{cc}
-5 & -3 \\
6 & 4
\end{array}\right)
$$

(a) Compute (by hand) the eigenvalues and eigenvectors of $A$.
(b) Give a matrix $X$ so that

$$
X^{-1} A X=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

where $\lambda_{1}$ and $\lambda_{2}$ are the eigenvalues you computed in part (a).
2. Let

$$
A=\left(\begin{array}{cc}
-2 & -2 \\
5 & 4
\end{array}\right)
$$

Compute (by hand) the eigenvalues and eigenvectors of $A$.
3. Assume $\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is an orthonormal set. If

$$
\vec{w}=\sum_{i=1}^{n} \alpha_{i} \vec{u}_{i}
$$

show that

$$
\|\vec{w}\|^{2}=\sum_{i=1}^{n} \alpha_{i}^{2}
$$

4. Your answer must include your code and the results of running it. You should use built-in or library functions of your system. In Matlab consult the documentation for rand and eig.
(a) Create a $(4 \times 4)$-matrix $A$ whose entries are random numbers between 0 and 1 .
(b) Compute the matrix $X$ and the matrix $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{4}\right)$ so that

$$
X^{-1} A X=D
$$

and verify this by computing $X^{-1} A X-D$ and seeing that it is (very close to) the zero matrix.

