HW3 – Due Friday, October 28, start of classNo electronic submissions, only hard copy

- 1. Let $g(z) = 5(1/2)^z + 2(1/3)^z$ for $z \ge 0$.
 - (a) Show that g > 0, g is decreasing, and $\lim_{z \to \infty} g(z) = 0$.
 - (b) Show that there is a unique solution to g(z) = 1.
- 2. Let $h(x) = x^2$ defined for $x \in [0, 1]$.
 - (a) Show that h is Lipschitz.
 - (b) Show that h is invertible but it is not bi-Lipschitz.
- 3. Let K_1 be the fractal with $K_1 = f_1(K_1) \cup f_2(K_1)$ for $f_1(x) = (1/3)x$ and $f_2(x) = (1/3)x + 2/3$, and let K_2 be the fractal with $K_2 = g_1(K_2) \cup g_2(K_2)$ for $g_1(x) = (1/5)x$ and $g_2(x) = (1/5)x + 4/5$.
 - (a) Is there a bi-Lipschitz map $h:[0,1]\to [0,1]$ with $h(K_1)=K_2$? Be sure to justify your answer completely.
 - (b) Find three distinct similarities α_1 , α_2 and α_3 so that $K_1 = \alpha_1(K_1) \cup \alpha_2(K_1) \cup \alpha_3(K_1)$
- 4. For the iterated function system shown below which defines the fractal K:
 - (a) Find similarities f_i so that

$$K = \bigcup_{i=1}^{5} f_i(K)$$

(b) Give the equation that the fractal dimension D satisfies and compute D (you can use any software or webpages or calculator for this).

