‘ HW 4 • SPRING 2020 • PROF. BOYLAND

1. Let

$$
A=\left(\begin{array}{cc}
-5 & -3 \\
6 & 4
\end{array}\right)
$$

Using your work from HW3, solve the differential equation

$$
\frac{d \vec{x}}{d t}=A \vec{x} \quad \text { with } \quad \vec{x}(0)=\binom{0}{1}
$$

Give your answer in both the matrix and the vector form.
2. With

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

the trace is $T=A_{11}+A_{22}$ and the determinant is $D=A_{11} A_{22}-A_{12} A_{21}$. Show using the quadratic formula that the eigenvalues of A are

$$
\frac{T \pm \sqrt{T^{2}-4 D}}{2}
$$

3. Let

$$
\Phi(\vec{x})=\vec{a}+\vec{b}^{T} \vec{x}+\frac{1}{2} \vec{x}^{T} S \vec{x}
$$

where \vec{a} and \vec{b} are given $(n \times 1)$ vectors and S is a symmetric $(n \times n)$ matrix. Give simple formulas for $\nabla \Phi(\vec{x})$ and $H \Phi(\vec{x})$. Be sure to justify your answer.
4. You can use your favorite computational platform for this problem along with any built-in or library functions.

$$
\Phi\left(x_{1}, x_{2}\right)=10 x_{1}^{2} x_{2}-5 x_{1}^{2}-4 x_{2}^{2}-x_{1}^{4}-2 x_{2}^{4}
$$

You are given that $(0,0),(2.6442,1.8984)$ and $(.8567, .6468)$ are numerical approximations of critical points of Φ.
(a) Compute $\nabla \Phi$ by hand and then verify numerically that the given points are near critical.
(b) Compute $H \Phi$ by hand and then using your computational platform classify each point as local min, max, or saddle.

