For each interger $N>0$ define an $N \times N$ matrix G_{N} by its components $\left(G_{N}\right)_{i, j}=\omega^{(i-1)(j-1)}$ for $i=1, \ldots, N$ and $j=1, \ldots, N$ where

$$
\omega=e^{2 \pi i / N}
$$

1. Compute G_{N} for $N=6$. Your entries should be exact numbers not decimals. For example, $\left(G_{6}\right)_{6,5}=\omega^{20}=\omega^{2}=e^{4 \pi i / 6}=\cos (2 \pi / 3)+i \sin (2 \pi i / 3)=-1 / 2+i \sqrt{3} / 2$.
2. Show that the last row of G_{N} for any N can be reduced to

$$
1, \omega^{-1}, \omega^{-2}, \ldots, \omega^{-(N-2)}, \omega^{-(N-1)}
$$

and then show this is equal to

$$
1, \omega^{N-1}, \omega^{N-2}, \ldots, \omega^{2}, \omega
$$

and also to

$$
1, \bar{\omega}, \bar{\omega}^{2}, \ldots, \bar{\omega}^{N-2}, \bar{\omega}^{N-1}
$$

3. Given $u=[2,5,1]$ and $v=[-1,4,3]$, by hand compute the cyclic convolution $u * v$. Show all work.
