‘ HW 5 • SPRING 2020 • PROF. BOYLAND

1. Let A have SVD $A=U \Sigma V^{T}$. What is the SVD of A^{T}, the SVD of $A^{T} A$, and the SVD of A^{-1} where in the last case we assume A is square with all positive singular values?
2. Let

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Compute (by hand) the nonzero singular values of A (just these not the whole decomposition).
3. Let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 2 \\
1 & 0 \\
0 & 2
\end{array}\right)
$$

Compute (by hand) the thin or reduced SVD of A. So find matrices with $A=U \Sigma V^{T}$ with U a 4×2 matrix with orthonormal columns, Σ a 2×2 diagonal matrix and V a 2×2 orthogonal matrix.
4. Your answer must include your code and the results of running it. You should use built-in or library functions of your system.
(a) For $i=1, \ldots, 100$ create a (10×10)-matrix A_{i} whose entries are random numbers between 0 and 1 and let $C_{i}=\sigma_{1} / \sigma_{10}$, the ratio of the largest and smallest singular values of A_{i}.
(b) Plot i vs C_{i}.
(c) For the data set $\left\{C_{1}, \ldots, C_{100}\right\}$ compute the mean and the standard deviation
(d) The number C_{i} is the condition number of A_{i} and is a measure of how badly behaved the matrix is under standard numerical methods. We will study it in detail later.

