- 1. Let A have SVD $A = U\Sigma V^T$. What is the SVD of A^T , the SVD of $A^T A$, and the SVD of A^{-1} where in the last case we assume A is square with all positive singular values?
- 2. Let

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

Compute (by hand) the nonzero singular values of A (just these not the whole decomposition).

3. Let

$$A = \begin{pmatrix} 1 & 0\\ 0 & 2\\ 1 & 0\\ 0 & 2 \end{pmatrix}$$

Compute (by hand) the thin or reduced SVD of A. So find matrices with $A = U\Sigma V^T$ with U a 4×2 matrix with orthonormal columns, Σ a 2×2 diagonal matrix and V a 2×2 orthogonal matrix.

- 4. Your answer must include your code and the results of running it. You should use built-in or library functions of your system.
 - (a) For i = 1, ..., 100 create a (10×10) -matrix A_i whose entries are random numbers between 0 and 1 and let $C_i = \sigma_1/\sigma_{10}$, the ratio of the largest and smallest singular values of A_i .
 - (b) Plot i vs C_i .
 - (c) For the data set $\{C_1, \ldots, C_{100}\}$ compute the mean and the standard deviation
 - (d) The number C_i is the *condition number* of A_i and is a measure of how badly behaved the matrix is under standard numerical methods. We will study it in detail later.