HW $6 \bullet$ FALL $2019 \bullet$ PROF. BOYLAND

Fix an even integer N. Recall $\vec{X}=\operatorname{DFT}(\vec{x})$ is defined for $n=0, \ldots, N-1$ by

$$
X_{n}=\frac{1}{N} \sum_{k=0}^{N-1} x_{k} \omega^{-k n}
$$

where

$$
\omega=e^{2 \pi i / N}
$$

1. Assume that the data vector \vec{x} contains just real numbers.
(a) Show that for $0<m<N$ that $X_{N-m}=\overline{X_{m}}$.
(b) Show that X_{0} and $X_{N / 2}$ are both real numbers. Give explicit formulas for them that don't use e or trig functions.
2. For some q assume that the data vector is $\vec{x}=(0,0, \ldots, 1, \ldots, 0)$ with the 1 in the $q^{\text {th }}$ slot. Compute (by hand) $\operatorname{DFT}(\vec{x})$.
3. Now for some q assume that the data vector is $\vec{x}=\left(1, \omega^{q}, \omega^{2 q}, \ldots, \omega^{(N-1) q}\right)$.
(a) Use Euler's formula to write \vec{x} in terms of sines and cosines.
(b) Compute (by hand) $\operatorname{DFT}(\vec{x})$.
