‘ HW 6 • SPRING 2020 • PROF. BOYLAND

1. Let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right)
$$

Compute (by hand) the thin or reduced SVD of A. So find matrices with $A=U \Sigma V^{T}$ with U a 3×2 matrix with orthonormal columns, Σ a 2×2 diagonal matrix and V a 2×2 orthogonal matrix. Now write A as

$$
A=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T}+\sigma_{2} \vec{u}_{2} \vec{v}_{2}^{T}
$$

2. Your answer must include your code and the results of running it and any figures. You should use built-in or library functions of your system. You will need to be able to import a gray scale image and turn it into a $m \times n$ matrix of floating point numbers and manipulate this and then display the result. One example in Matlab is below (there are other built-in images) and if you are using another platform you can import your own image.
```
bb = imread('board.tif'); %reads the built-in image file
bb = double(bb); %Changes it to a floating point matrix
A = .3 * bb(:, :, 1) + .6* bb(:,:,2) + .1*bb(:,:,3); %weighted average
% of three color channels to get grayscale
figure; imshow(A, []); % displays the image
```

So A is the $m \times n$ matrix, its entries are floating point numbers between 0 and 255 . Let $k=\min \{m, n\}$.
(a) Load an image file and transform it into a floating point matrix A
(b) Compute the SVD $A=U \Sigma V^{T}$.
(c) Plot i vs σ_{i} with $i=1, \ldots, k$
(d) Let

$$
A_{i}=\sum_{j=1}^{i} \sigma_{j} \vec{u}_{j} \vec{v}_{J}^{T}
$$

In class we showed that $\left\|A_{i}-A\right\|_{2}=\sigma_{i+1}$. Verify this by computing the max over $i=$ $1, \ldots, k-1$ of $\left|\left\|A_{i}-A\right\|_{2}-\sigma_{i+1}\right|$.
(e) By displaying A and then A_{i} for various i, estimate the smallest i for which A_{i} provides a reasonably accurate verion of the full resolution image given by A. Include a picture of the image for that i in your solutions.

