1. Let A be a $(m \times n)$-matrix.
(a) Show that $\|A\|_{F}^{2}=\operatorname{trace}\left(A^{T} A\right)=\operatorname{trace}\left(A A^{T}\right)$.
(b) If U and V are $(m \times m)$ and $(n \times n)$ orthogonal matrices, respectively, show that $\|U A\|_{F}=$ $\|A V\|_{F}=\|A\|_{F}$.
(c) If A has full SVD, $A=U \Sigma V^{T}$, with r nonzero singular values, show that $\|A\|_{F}^{2}=\sigma_{1}^{2}+$ $\cdots+\sigma_{r}^{2}$.
2. In this exercise you will investigate the conditioning of multiplication by an ill-conditioned matrix. Your answer must include any code and the results of running it. You should use built-in or library functions of your system.
(a) In what follows, \vec{x} is the base vector, \vec{y} is the perturbation direction, and $\epsilon>0$ is the size of the perturbation and so the perturbed vector is $\vec{z}=\vec{x}+\epsilon \vec{y}$. In this case the specific condition number of matrix multiplication $f(\vec{x})=A \vec{x}$ associated with \vec{x}, \vec{y} and ϵ is

$$
\begin{equation*}
\kappa(\vec{x}, \vec{y}, \epsilon)=\frac{\frac{\|\delta f\|}{\|f\|}}{\frac{\|\Delta \vec{x}\|}{\|\vec{x}\|}}=\frac{\frac{\| A \vec{z}-A \vec{x}) \|}{\|A \vec{x}\|}}{\frac{\|\vec{z} \vec{x}\|}{\|\vec{x}\|}} \tag{1}
\end{equation*}
$$

Now assume all norms are two-norms and that \vec{x} and \vec{y} are unit vectors. Show that in this case the formula (??) reduces to

$$
\begin{equation*}
\kappa(\vec{x}, \vec{y}, \epsilon)=\frac{\|A \vec{y}\|}{\|A \vec{x}\|} \tag{2}
\end{equation*}
$$

Notice that the ϵ has dropped out, so it is independent of the size of the perturbation. This is because it is a relative condition number. We now just write $\kappa(\vec{x}, \vec{y})$.
(b) Create the 5×5 Hilbert matrix H via the rule

$$
H_{i, j}=\frac{1}{i+j-1}
$$

(c) Compute the SVD, $H=U \Sigma V^{T}$.
(d) Compute the usual, two-norm condition number of H. It should be approx 4.8×10^{5}.
(e) Now create \vec{x} and \vec{y} as random, (5×1) unit vectors and compute $\kappa(\vec{x}, \vec{y})$. Repeat this 10 times and compute the max, min, mean and standard deviation of your results.
(f) Now let $\vec{x}=\vec{v}_{5}$ the last, right singular vector and $\vec{y}=\vec{v}_{1}$ the first, right singular vector and compute $\kappa(\vec{x}, \vec{y})$.
(g) Explain the disparity and relationship between the results in parts (d), (e) and (f) using equation (??).

