- 1. Let A be a $(m \times n)$ -matrix.
 - (a) Show that $||A||_F^2 = \operatorname{trace}(A^T A) = \operatorname{trace}(AA^T)$.
 - (b) If U and V are $(m \times m)$ and $(n \times n)$ orthogonal matrices, respectively, show that $||UA||_F = ||AV||_F = ||A||_F$.
 - (c) If A has full SVD, $A = U\Sigma V^T$, with r nonzero singular values, show that $||A||_F^2 = \sigma_1^2 + \cdots + \sigma_r^2$.
- 2. In this exercise you will investigate the conditioning of multiplication by an ill-conditioned matrix. Your answer must include any code and the results of running it. You should use built-in or library functions of your system.
 - (a) In what follows, \vec{x} is the base vector, \vec{y} is the perturbation direction, and $\epsilon > 0$ is the size of the perturbation and so the perturbed vector is $\vec{z} = \vec{x} + \epsilon \vec{y}$. In this case the specific condition number of matrix multiplication $f(\vec{x}) = A\vec{x}$ associated with \vec{x}, \vec{y} and ϵ is

$$\kappa(\vec{x}, \vec{y}, \epsilon) = \frac{\frac{\|\delta f\|}{\|f\|}}{\frac{\|\delta \vec{x}\|}{\|\vec{x}\|}} = \frac{\frac{\|A\vec{z} - A\vec{x})\|}{\|A\vec{x}\|}}{\frac{\|\vec{z} - \vec{x}\|}{\|\vec{x}\|}}$$
(1)

Now assume all norms are two-norms and that \vec{x} and \vec{y} are unit vectors. Show that in this case the formula (??) reduces to

$$\kappa(\vec{x}, \vec{y}, \epsilon) = \frac{\|A\vec{y}\|}{\|A\vec{x}\|} \tag{2}$$

Notice that the ϵ has dropped out, so it is independent of the size of the perturbation. This is because it is a *relative* condition number. We now just write $\kappa(\vec{x}, \vec{y})$.

(b) Create the 5×5 Hilbert matrix H via the rule

$$H_{i,j} = \frac{1}{i+j-1}$$

- (c) Compute the SVD, $H = U\Sigma V^T$.
- (d) Compute the usual, two-norm condition number of H. It should be approx 4.8×10^5 .
- (e) Now create \vec{x} and \vec{y} as random, (5×1) unit vectors and compute $\kappa(\vec{x}, \vec{y})$. Repeat this 10 times and compute the max, min, mean and standard deviation of your results.
- (f) Now let $\vec{x} = \vec{v}_5$ the last, right singular vector and $\vec{y} = \vec{v}_1$ the first, right singular vector and compute $\kappa(\vec{x}, \vec{y})$.
- (g) Explain the disparity and relationship between the results in parts (d), (e) and (f) using equation (??).