The Fourier transform of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
\hat{f}(s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i s t} d t
$$

1. If $f$ is real-valued, show that $\hat{f}(-s)=\overline{\hat{f}(s)}$.
2. Show that $\mathcal{F}(t f(t))(s)=i \frac{d \hat{f}(s)}{d s}$. Hint: write down $i \hat{f}(s)$ using the definition above, take the derivative and then move the derivative inside the integral.
3. Using the various properties we derived in class, express the Fourier transform of

$$
\frac{d(f(a t-b))}{d t}
$$

in terms of $\hat{f}$.
4. We showed in class that if $f(t)=e^{-t^{2} / 2}$, then $\hat{f}(s)=e^{-s^{2} / 2}$. Use this fact along with the properties we derived in class to compute the Fourier transforms of the following functions.
(a) $f(t)=e^{-7 t^{2}}$.
(b) $f(t)=e^{-(3 t+2)^{2} / 2}$.
(c) $f(t)=3 t e^{-t^{2} / 2}$.

