For a function f in $L^{1}\left([-\pi, \pi]^{2}\right)$ its two-dimensional Fourier series is given by

$$
f(x, y)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} F_{m, n} \frac{e^{i(m x+n y)}}{2 \pi}
$$

where

$$
F_{m, n}=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(x, y) \frac{e^{-i(m x+n y)}}{2 \pi} d x d y
$$

For a function f in $L^{1}\left(\mathbb{R}^{2}\right)$ it two-dimensional Fourier transform is given by

$$
\hat{f}(r, s)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-i(r x+s y)} d x d y
$$

1. Let $f(x, y)=1$ when $-\pi / 2 \leq x \leq \pi / 2$ and $-\pi / 2 \leq y \leq \pi / 2$ and $f(x, y)=0$ for all other (x, y).
(a) Find the two-dimensional Fourier Series of f.
(b) Find the two-dimensional Fourier transform of f.
2. Let $f(x, y)=x y$ when $-\pi \leq x \leq \pi$ and $-\pi \leq y \leq \pi$ and $f(x, y)=0$ for all other (x, y).
(a) Find the two-dimensional Fourier Series of f.
(b) Find the two-dimensional Fourier transform of f.
3. Let $\phi(x, y)=\cos (2 x+3 y)$.
(a) Draw three level sets where $\phi(x, y)=1$ and three level sets where $\phi(x, y)=-1$.
(b) The wave length of ϕ is the distance betwen two adjacent level sets of the same value, for example, between two adjacent level sets with $\phi(x, y)=1$. What is the wave length of ϕ ?
