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tLet f be an orientation-preserving homeomorphism of a 
ompa
t orientable mani-fold. SuÆ
ient 
onditions are given for the persisten
e of a 
olle
tion of periodi
 pointsunder isotopy of f relative to a 
ompa
t invariant set A. Two main appli
ations aredes
ribed. In the �rst, A is the 
losure of a single dis
rete orbit of f , and f has aSmale horseshoe, all of whose periodi
 orbits persist; in the se
ond, A is a minimalinvariant Cantor set obtained as the limit of a sequen
e of nested periodi
 orbits, allof whi
h are shown to persist under isotopy relative to A.AMS Classi�
ation s
heme numbers: 58F20, 58F151 Introdu
tionDynami
al properties whi
h are exhibited by every homeomorphism in an isotopy 
lass aresaid to be isotopy stable. The identi�
ation of isotopy stable features makes it possibleto obtain a great deal of information about the dynami
s of a map given only limitedalgebrai
 or 
ombinatorial data 
on
erning its isotopy 
lass. The simplest example of thisis provided by the Lefs
hetz �xed point theorem whose 
on
lusion, from this point ofview, is the existen
e of an isotopy stable �xed point. Nielsen �xed point theory yieldsa re�nement of the Lefs
hetz theorem, by means of whi
h it may be possible to provethe isotopy stability of a 
olle
tion of several �xed points. Somewhat surprisingly, theappli
ation of this theory to periodi
 points is 
omparatively re
ent, with the work ofHalpern [18℄, Jiang [23℄ and others. The pro
eedings [28℄ give a good pi
ture of the
urrent state of the theory.Unremovability is the strongest sense in whi
h a periodi
 point 
an be isotopy stable.It arises from the bifur
ation-theoreti
 notion of following a periodi
 point through a
ontinuously varying family of homeomorphisms: if ft is su
h a family (i.e. an isotopy),and t 7! pt is a path in M with the property that pt is a periodi
 point of ft with period n1



for all t, then the pairs (p0 ; f0) and (p1 ; f1) are said to be strong Nielsen equivalent. Thepair (p ; f) is said to be unremovable if every g isotopi
 to f has a periodi
 point q su
hthat (p ; f) and (q ; g) are strong Nielsen equivalent. In other words, any g isotopi
 to fhas a periodi
 point q whi
h shares with p any dynami
al property whi
h is preserved asit is followed 
ontinuously through a family of homeomorphisms.Using bifur
ation-theoreti
 te
hniques, suÆ
ient 
onditions for the unremovability ofa periodi
 point of a C1-di�eomorphism were given by Asimov and Franks [1℄. Their workwas subsequently generalized, using more traditional Nielsen-theoreti
 methods, to 
ol-le
tions of periodi
 points of homeomorphisms under isotopy relative to a �nite invariantset [16℄. By means of the Nielsen-Thurston 
lassi�
ation theorem, ne
essary and suÆ-
ient 
onditions have been given for the unremovability of �xed points [24℄ and periodi
points [7℄ of surfa
e homeomorphisms. In this paper, suÆ
ient 
onditions are given forthe unremovability of 
olle
tions of periodi
 points under isotopy relative to a general
ompa
t invariant set. The main appli
ation anti
ipated for these results is to surfa
ehomeomorphisms, but the results are valid for manifolds of any dimension greater thanone.Nielsen theory relative to an invariant set A has been 
onsidered by several authors,and is used to �nd lower bounds on the number of periodi
 orbits in the whole spa
e, theinvariant set, and the 
omplement of the invariant set. [31℄ is a good survey arti
le for theinterested reader. In 
ontrast to the approa
h of su
h papers, there is no requirement herethat A be an Absolute Neighborhood Retra
t. In fa
t, A is a Cantor set in many of themore substantial appli
ations. This level of generality is a
hieved by �nding 
onditionswhi
h imply that Nielsen 
lasses remain bounded away from A.The bifur
ation-theoreti
 approa
h provides a useful heuristi
 for understanding the
onditions for unremovability whi
h are presented here. Given a periodi
 point p of ahomeomorphism f , one 
an ask how the periodi
 point might disappear as it is followedthrough a family of homeomorphisms. There are three obvious s
enarios under whi
h this
an o

ur. In the �rst, the 
ontinuation of p 
ollides with the 
ontinuation of a periodi
point on a di�erent orbit, and the two annihilate ea
h other (saddle-node bifur
ation). Forthis to happen two 
onditions must be satis�ed. First, the two periodi
 points must beable to 
ollide and so they must lie in the same strong Nielsen equivalen
e 
lass (that is,the topologi
al manner in whi
h they are embedded in M nA must be the same). Se
ond,in order that they 
an annihilate ea
h other, the sum of their periodi
 point indi
es mustbe zero. Thus this s
enario 
an be ruled out by requiring that the set of all periodi
points of f whi
h are strong Nielsen equivalent to p has non-zero index. This 
ondition isexpressed by saying that p has an essential strong Nielsen 
lass.The se
ond s
enario is that the 
ontinuation of p 
ollides with the 
ontinuation ofanother point on the same orbit (period-dividing bifur
ation). This is ruled out by theun
ollapsibility hypothesis, a pre
ise topologi
al statement that the periodi
 point never2



period divides. This high-level 
ondition is used in the statement of the theorem be
ausethere are a number of di�erent hypotheses, often veri�able in pra
ti
e, whi
h imply un-
ollapsibility. Some of these are des
ribed in Se
tion 3. Noti
e that a �xed point 
annotperiod divide, and hen
e this 
ondition only 
omes into play when 
onsidering periodi
points of period greater than one.The �nal s
enario is that the 
ontinuation of p runs into A. If A is topologi
ally simple,then p will run into a periodi
 point in A whi
h is strong Nielsen equivalent to p, and insu
h 
ases p should be 
onsidered to be unremovable. In 
ases where the topology of A andthe dynami
s of f restri
ted to A are suÆ
iently 
ompli
ated, there are other possibilitiesto 
onsider: the 
ontinuation of p 
ould limit to a non-trivial 
ontinuum in A, or to aperiodi
 point to whi
h it is not strong Nielsen equivalent. Disallowing these possibilitiesrequires a new Nielsen-theoreti
 ingredient, strong Nielsen boundedness. Conditions whi
himply strong Nielsen boundedness are given in Se
tion 3.The main theorem (proved in Se
tion 2.3) is:Theorem 2.4 For an orientation preserving homeomorphism of a 
ompa
t smooth ori-entable manifold M with 
ompa
t invariant set A, a periodi
 point 
olle
tion whi
h isun
ollapsible, strong Nielsen bounded, and essential rel A is unremovable rel A.Noti
e that the theorem is stated for (�nite) 
olle
tions of periodi
 points, rather thansingle periodi
 points as in the above dis
ussion. There are two reasons for working withperiodi
 point 
olle
tions. First, the persisten
e of a 
olle
tion means more than thatthe individual orbits persist: it also implies the persisten
e of the topologi
al relationshipbetween those orbits. This is often useful in appli
ations. Se
ond, proving the unremov-ability of a 
olle
tion of periodi
 points is sometimes easier than proving their individualunremovability, sin
e the topologi
al relationship between the orbits 
an present additionalobstru
tions to removability (see Remark 3.2 d)).As noted above, the main 
ontributions of this paper are te
hniques for doing Nielsentheory relative to topologi
ally 
ompli
ated invariant sets A. The prin
ipal new featurein this 
ase is the third s
enario dis
ussed above. In �nding 
onditions that disallow thiss
enario it does not suÆ
e to require that the given periodi
 point is not Nielsen equivalentto any points in A (see the example in Se
tion 4.2). Rather, one must restri
t attentionto the Nielsen bounded 
lasses, i.e. the 
lasses that are inside the 
omplement of A forany isotopi
 map. In �nding 
onditions that imply Nielsen boundedness it is ne
essarythat the dynami
s on A be known: one 
annot hope to do Nielsen theory on non
ompa
tspa
es without information about the a
tion on the \ends". The a
tion on the ends is
lear when the problem is stated in terms of isotopies relative to a 
ompa
t invariant set.Working relative to an invariant set has the added advantage of making the the �xed pointindex straightforward; the index of a �xed point rel A is just the index in M . However,this point of view has its own 
ompli
ations. Contrary to the situation in the absen
e of asele
ted invariant set, if A 
ontains a

umulation points then two rel A homeomorphisms
an be arbitrarily 
lose (as homeomorphisms of M) and still not be isotopi
 rel A.3



Working in the non
ompa
t spa
e A
 does have one very 
onvenient feature. If twoperiodi
 points are said to be Nielsen equivalent rel A if they are Nielsen equivalent in A
,then most of the standard aspe
ts of Nielsen theory (ex
luding the index) go through withlittle 
hange. A familiarity with this standard Nielsen theory will be assumed: [23℄ is anex
ellent referen
e.Se
tion 2 
onsists of de�nitions, basi
 lemmas and the proof of the main theorem,whi
h is based on the approa
h of [16℄. Conditions whi
h imply Nielsen boundedness andun
ollapsibility are then des
ribed in Se
tion 3. Finally, a number of examples and appli-
ations of the main theorem are presented in Se
tion 4. Those of Se
tions 4.1 and 4.2 arerelatively simple, and are intended to illustrate some of the de�nitions and the appli
ationof the main theorem; more substantial appli
ations are given in Se
tions 4.3 and 4.4.2 The Unremovability theorem2.1 De�nitionsLetM be a 
ompa
t smooth orientable manifold with metri
 d, and A be a 
ompa
t subsetof M . The 
omplement of A in M is denoted A
 = M n A. Let Aut(M;A) denote thespa
e of orientation preserving homeomorphisms f : (M;A) ! (M;A) equipped with theuniform metri
 � indu
ed by d. For ea
h integer n � 1, let Pn(f) be the set of (least)period n points of f : thus Pn(f) is an open subset of Fix(fn). The orbit of a point p 2Munder f is written o(p; f) = ff i(p) : i 2Zg.In this paper, 
olle
tions of k � 1 distin
t periodi
 points will be 
onsidered: theirperiods will be en
oded in a ve
tor n = (n1; : : : ; nk). The reader may �nd it helpful to
on
entrate initially on the 
ase k = 1. Write Fn(f):Mk !Mk for the map fn1�� � ��fnk ,and de�ne Pn(f) � Mk for the set of points p = (p1; : : : ; pk) su
h that p� 2 Pn�(f) forea
h � � k, and the points p� all lie on di�erent orbits of f : 
learly Pn(f) is an opensubset of Fix(Fn(f)). In pra
ti
e, whenever k and n are either arbitrary or �xed withoutambiguity, the subs
ripts will be dropped and the symbols F(f) and P (f) used. Moreover,the symbols � and � will always be taken to range over f1; : : : ; kg, and expressions su
has `for some �' or `for all �' should be interpreted a

ordingly. The produ
t metri
 onMkwill also be denoted d. Finally, in an abuse of notation, p 2 A
 will be taken to mean thatp� 62 A for all �, and p 62 A
 to mean the 
onverse, that p� 2 A for some �.If f 2 Aut(M;A) and p 2 P (f), then the pair (p ; f) 2 Mk � Aut(M;A) is referredto as a periodi
 point 
olle
tion: the set of all periodi
 point 
olle
tions with periods n isdenoted PPC(n) (or just PPC):PPC = f(p ; f) 2Mk � Aut(M;A) : p 2 P (f)g:4



Similarly FIX(n) (or just FIX) is de�ned as:FIX = f(p ; f) 2Mk � Aut(M;A) : p 2 Fix(F(f))g;and thus PPC is an open subset of FIX.Isotopies (respe
tively homotopies) will be written in the form ft: f ' g. This meansthat there are homeomorphisms (respe
tively maps) ft:M ! M for ea
h t 2 [0; 1℄, su
hthat the mapM�I !M given by (p; t) 7! ft(p) is an isotopy (respe
tively homotopy) fromf to g. Isotopies and homotopies will usually be taken relative to A: in this 
ase, all themaps ft are required to agree pointwise on A. Isotopies and homotopies of ar
s and pathsrelative to A are de�ned similarly: su
h an ar
 or path is allowed to pass through A, butinterse
tions with A must remain �xed throughout the isotopy or homotopy. To be morepre
ise, if �: [0; 1℄! M is a path, and �(t�) 2 A for some t� 2 [0; 1℄, then �(t�) = �(t�)for any path � whi
h is homotopi
 to � rel A. A homotopy fFtg:F(f) ' F(g) is said tobe relative to A if�i(Ft(x1; : : : ; xi�1; a; xi+1; : : : ; xk)) = fni(a) = gni(a)for a 2 A and all 1 � i � k where �i :Mk !M is the proje
tion onto the ith 
omponent.Homotopy of paths in Mk relative to A is de�ned similarly.Two �xed points p; q 2 A
 of an iterate fn of f are said to lie in the same fn-Nielsen
lass rel A if they lie in the same Nielsen 
lass for the restri
tion of fn to A
 in the usualsense:De�nition 2.1 Suppose that p; q 2 Fix(fn) \ A
 for some integer n � 1. Then p and qlie in the same fn-Nielsen 
lass rel A if there is a path � in A
 from p to q su
h that �and fn Æ � are homotopi
 relative to endpoints in A
.By 
ontrast, the de�nitions of two periodi
 point 
olle
tions being Nielsen equivalentor strong Nielsen equivalent rel A involve working rel A rather than in A
. In parti
ular,this means that the de�nitions are valid even if some of the points in the 
olle
tion lie inA.De�nitions 2.2 Two elements (p ; f) and (q ; g) of FIX are Nielsen equivalent rel A ifthere exists a path � in Mk from p to q, and a homotopy Ft:F(f) ' F(g) relative to Asu
h that the path t 7! Ft(�(t)) is homotopi
 (with �xed endpoints) to � rel A.Two elements (p ; f) and (q ; g) of PPC are Strong Nielsen equivalent rel A, written(p ; f) � (q ; g), if there exists a path 
 in Mk from p to q, and a rel A isotopy ft: f ' gwith 
(t) 2 P (ft) for all t. It will be said that (p ; f) � (q ; g) by the path 
 and theisotopy ft. The Strong Nielsen Class of an element (p ; f) 2 PPC is de�ned to besn
(p ; f) = fq 2 P (f) : (q ; f) � (p ; f)g:5



Remarks 2.1a) Noti
e that in De�nition 2.2 there is no requirement that the periodi
 points or thepaths lie in A
.b) The r̀el A' will be dropped where there is no danger of 
onfusion.
) It is 
lear that Nielsen equivalen
e and Strong Nielsen equivalen
e are equivalen
erelations on FIX and PPC respe
tively. The relation of Nielsen equivalen
e 
orre-sponds to what is normally termed 
orresponden
e of Nielsen 
lasses under a homo-topy (see [23℄). The equivalen
e 
lasses under strong Nielsen equivalen
e are justthe path 
omponents of PPC.d) It 
an easily be seen that Strong Nielsen equivalen
e implies Nielsen equivalen
e:simply 
hoose � = 
 and Ft = F(ft).e) If f is a �xed homeomorphism, then it would seem natural to refer to the set S ofall q in P (f) for whi
h (q ; f) is Nielsen equivalent to (p ; f) as the Nielsen 
lass of(p ; f). This is not 
orre
t be
ause it is not the F(f)-Nielsen 
lass of p in the usualsense. This remains the 
ase even when ea
h q 2 S 
an be shown to be Nielsenequivalent to (p ; f) using a path � in A
: what S is in this 
ase is the union of allF(f)-Nielsen 
lasses whi
h 
orrespond to that of p under a homotopy. The set Sis the usual Nielsen 
lass if every self-homotopy of F(f) lifts to a self-homotopy inthe universal 
over of (M nA)k: that is, if the Jiang subgroup of F(f) is trivial [23℄.This is always the 
ase if the 
enter of the fundamental group of (M nA)k is trivial.If (p ; f) � (q ; g), then not only do 
orresponding periodi
 points from the two 
olle
-tions have equal periods, but also the way in whi
h they are embedded in the dynami
s ofthe homeomorphisms relative to A and to ea
h other are preserved. For example, in thesurfa
e 
ase, the two 
olle
tions have the same braid types and the same mutual linkingnumbers [16℄. It is for this reason that strong Nielsen equivalen
e is a good relation to usein the de�nition of unremovability.De�nition 2.3 A periodi
 point 
olle
tion (p ; f) 2 PPC is unremovable if for all g 2Aut(M;A) isotopi
 to f (rel A), there is some q 2 P (g) su
h that (p ; f) � (q ; g).Remarks 2.2a) Noti
e that the de�nition of P (f) requires that ea
h p� lies on a di�erent orbit. Thus,for example, if (p ; f) 
onsists of two periodi
 points p1 and p2 with (p1 ; f) � (p2 ; f),then it is possible that (p ; f) is not unremovable even though (p1 ; f) and (p2 ; f)are. 6



b) If (p ; f) is unremovable, then so is ea
h (q ; g) with (q ; g)� (p ; f).De�nitions 2.4 Let (p ; f) 2 PPC and (q ; g) 2 FIX. A strong approximating familyfrom (p ; f) to (q ; g) is a triple (ft; ti;qi), where ft: f ' g is an isotopy relative to A;ti ! 1 is a sequen
e in [0; 1℄; and qi ! q is a sequen
e in Mk with qi 2 P (fti) and(p ; f) � (qi ; fti) for all i. An approximating family from (p ; f) to (q ; g) is a similartriple in whi
h ft need only be a homotopy, qi need only lie in Fix(F(fti)), and ea
h(qi ; fti) need only be Nielsen equivalent to (p ; f).The periodi
 point 
olle
tion (p ; f) is said to be un
ollapsible (relative to A) if when-ever (q ; g) 2 FIX and there is a strong approximating family from (p ; f) to (q ; g), then(q ; g) 2 PPC. It is said to be strong Nielsen bounded away from A (respe
tively Nielsenbounded away from A) if whenever (q ; g) 2 FIX and there is a strong approximatingfamily (respe
tively an approximating family) from (p ; f) to (q ; g), then q 2 A
.Remarks 2.3a) Sin
e the 
onditions for an approximating family are weaker than those for a strongapproximating family, it follows that Nielsen boundedness implies strong Nielsenboundedness.b) Conditions whi
h imply un
ollapsibility, Nielsen boundedness and strong Nielsenboundedness are given in se
tion 3.
) If (p ; f) is un
ollapsible or strong Nielsen bounded, then so is any periodi
 point
olle
tion (q ; g) whi
h is strong Nielsen equivalent to (p ; f).Re
all (see for example [23℄) that, generalizing the notion of the index of an isolated�xed point, there is an index fun
tion whi
h assigns an integer index(M;U; f) to ea
htriple (M;U; f) 
onsisting of a 
ompa
t manifold M , an open subset U �M , and a mapf :M !M with Fix(f)\�U = ;. The index is de�ned axiomati
ally, the properties whi
hare relevant here being the following:Normalization index(M;M; f) = L(f), the Lefs
hetz number of f .Existen
e If index(M;U; f) 6= 0, then Fix(f) \ U 6= ;.Homotopy If ft: f0 ' f1 is a homotopy su
h that Fix(ft) \ �U = ; for all t, thenindex(M;U; f0) = index(M;U; f1):Ex
ision If V is an open subset of U su
h that Fix(f) \ U = Fix(f)\ V , thenindex(M;U; f) = index(M;V; f):7



Produ
t index(M �N;U � V; f � g) = index(M;U; f) � index(N; V; g).If F is an open subset of Fix(f) whi
h is 
ompa
t (for example an isolated �xed point),then its index 
an be de�ned by index(F; f) = index(U; f), where U is an open subset ofX with U \ Fix(f) = F . This de�nition is independent of the 
hoi
e of U by the ex
isionproperty.De�nitions 2.5 If sn
(p ; f) is open and 
losed in Fix(F(f)), then the index of (p ; f) isI(p ; f) = index(sn
(p ; f);F(f)). If I(p ; f) exists and is non-zero, then (p ; f) is said tobe essential.As a 
onsequen
e of Proposition 2.3 below, the index always exists when (p ; f) isun
ollapsible and strong Nielsen bounded. The unremovability theorem (Theorem 2.4)states that if (p ; f) is un
ollapsible, strong Nielsen bounded, and essential, then it isunremovable.2.2 Preliminaries to the unremovability theoremIn this se
tion some preliminary propositions will be stated and proved. The followingnotation is adopted: given � > 0 and a subset S ofM , the open and 
losed �-neighborhoodsof S are denoted N(S; �) and N(S; �) respe
tively. An isotopy ft is said to be an �-isotopyif �(fs; ft) < � for all s and t: if su
h an �-isotopy exists, then f0 and f1 are said tobe �-isotopi
. Closed disks, 
ir
les and annuli 
entered at the origin in Rn are denotedD(�) = fz 2 Rn : jzj � �g, S� = fz 2 Rn : jzj = �g, and A(a; b) = fz 2 Rn : a � jzj � bg.If f is a map de�ned in a neighborhood of S�, then f� denotes its restri
tion to S�.The following topologi
al lemma will be used in proving Proposition 2.2. Its proofuses a deep topologi
al result, the annulus 
onje
ture (now a theorem, see the 
ommentsin [25℄ inserted in the version reprinted in the appendix of [26℄ as well as [29℄). We havea more elementary proof of Proposition 2.2 whi
h is not based on the annulus 
onje
ture,but it is mu
h longer.Lemma 2.1 Let f : D(1) ! Rn be an orientation preserving topologi
al embedding withf(0) = 0, and let � 2 (0; 1). Then there exist � 2 (0; �) and bf : D(1) ! Rn with bf ' frel f0g by an isotopy supported on �N(0; �), and bf = id on N(0; �).Proof. Pi
k � > 0 small enough that D(�) is 
ontained in f(N(0; �)). Now f� is 
ertainlya lo
ally 
at embedding sin
e it is the restri
tion of a embedding of D(1), so the annulus
onje
ture yields a homeomorphism h : Â! A(�; �), where Â is the 
losed region boundedby S� and f(S�).The 
onstru
tion of bf uses a homeomorphism F : A(�; �)! A(�; �) whi
h sends ea
h
ir
le S� to itself. Sin
e hf� is an orientation preserving homeomorphism of S� there is an8



Alexander isotopy Ht : hf� ' id. Pi
k � < (� � �)=2 and for ea
h � � � � � � �, de�neF� = H�(�) with � : [���; �℄! [0; 1℄ an orientation reversing homeomorphism. Similarly,using an isotopy of h� to the identity, F� 
an be de�ned for � � � � �+ � so that F� = h�and F�+� is the identity. Finally, for �+ � � � � � � �, let F� = id.The required bf is de�ned by letting it equal f on A(�; 1), h�1F on A(�; �) and theidentity on D(�). Sin
e ( bf�1f)� = id and bf�1f(0) = 0 the Alexander tri
k yields bf�1f 'idrel f0g and so f ' bfrel f0g.Note that if Hn is the upper half spa
e fx 2 Rn : xn � 0g then the analog of theproposition for embeddings f : D(1)\Hn ! Hn also holds.Two main propositions are prerequisites for the proof of the unremovability theorem.The �rst is a lo
al result, saying that if (p ; f) is a periodi
 point 
olle
tion with p 2 A
,then all nearby periodi
 point 
olle
tions are strong Nielsen equivalent to (p ; f).Proposition 2.2 Suppose that (p ; f) 2 PPC with p 2 A
. Then there exists � > 0 su
hthat whenever g is �-isotopi
 to f rel A, and q 2 P (g) is �-
lose to p, then (p ; f) � (q ; g).In parti
ular, if (p ; f) is un
ollapsible and strong Nielsen bounded, and there exists astrong approximating family from (p ; f) to (q ; g), then (p ; f) � (q ; g).Proof. Assume �rst that the periodi
 point 
olle
tions (p ; f) and (q ; g) 
onsist of single�xed points p and q and that p is in the interior of M . Pi
k Æ > 0 so that N(p; Æ) isbounded away from A and is a 
oordinate 
hart in the manifold M . Now pi
k � < Æ=5so that f(N(p; �)) � N(p; Æ). Using Lemma 2.1 lo
ally, obtain the 
orresponding � anda lo
al homeomorphism bf that agrees with f outside N(p; �). De�ning bf to be f outsideN(p; �) yields a homeomorphism bf ' f rel (fpg [ A) by an isotopy supported on N(p; �)and bf = id on N(p; �).Thus (p; f) � (p; bf) by the 
onstant path and an isotopy supported on N(p; �). Ifft : f ' g is an �-isotopy and (q; g) is a �xed point with d(q; p) < �, then (q; bf) � (p; bf)by any path 
ontained in N(0; �) and the 
onstant isotopy. It remains to show that(q; bf ) � (q; g).If f 0t denotes the isotopy from bf to f followed by that from f to g, then f 0t : bf ' gis a (� + �)-isotopy. Thus, in parti
ular, the path t 7! f 0t(q) is 
ontained in N(q; 2�).Pi
k lo
al 
oordinates (and a ve
tor spa
e stru
ture) adapted to the metri
 for N(q; 4�)�N(p; 5�)� N(p; Æ) with origin q = 0. For z near q de�ner(z) = ( 1� jzj=2� if jzj � 2�0 otherwise,9



and let kt(z) = z � r(z � f 0t(q))f 0t(q), where the subtra
tion and multipli
ation use thelo
al ve
tor spa
e stru
ture. It is easy to 
he
k that kt is an isotopy id ' id supported on�N(q; 4�), with kt(f 0t(q)) = q for all t. The isotopy kt Æ f 0t : bf ' g is thus rel fqg, and so(q; bf ) � (q; g) using this isotopy and the 
onstant path.If p is on the boundary, �nd bf and � using the remark after Lemma 2.1. If q is in theinterior, pro
eed as above. If q is on the boundary, then the path t 7! f 0t(q) is also, andthe isotopy kt 
an be 
onstru
ted as above. If p is a periodi
 point instead of a �xed point,
hoose the initial Æ so that the balls N(f i(p); Æ) are disjoint 
harts. The generalization toperiodi
 point 
olle
tions is straightforward.To prove the se
ond senten
e of the proposition, note that (q ; g) 2 PPC and q 2A
 by un
ollapsibility and strong Nielsen boundedness respe
tively. By the �rst partof the proposition, (q ; g) is strong Nielsen equivalent to all suÆ
iently 
lose periodi
point 
olle
tions in the strong approximating family, and hen
e (p ; f) � (q ; g) by thetransitivity of �.The se
ond proposition is a standard form whi
h is needed for any theory of Nielsentype. It says that the strong Nielsen 
lass of an un
ollapsible and strong Nielsen boundedperiodi
 point 
olle
tion (p ; f) is both open and 
losed in the appropriate �xed pointset, and thus its index is de�ned. The index is also de�ned for any (q ; g) � (p ; f), byRemark 2.3 
): the se
ond statement of the proposition says that the index is independentof the 
hoi
e of periodi
 point 
olle
tion in the strong Nielsen equivalen
e 
lass. Thefollowing notation is used in the proof of this proposition: if ./ is a binary relation, anda(i) and b(i) are expressions dependent on a positive integer i, then a(i) ./i b(i) meansthat a(i) ./ b(i) for all suÆ
iently large i.Proposition 2.3 If (p ; f) is un
ollapsible and strong Nielsen bounded, then sn
(p ; f) is
ompa
t, and open in Fix(F(f)). If (q ; g)� (p ; f) then I(q ; g) = I(p ; f).Proof. Compa
tness: Let qi be a sequen
e in sn
(p ; f) with qi ! q 2Mk. Then thereis a strong approximating family (ft = f; 1� 1=i;qi) from (p ; f) to (q ; f), and hen
e(p ; f) � (q ; f) by Proposition 2.2: that is, (q ; f) 2 sn
(p ; f). Thus sn
(p ; f) is 
losedin the 
ompa
t spa
e Mk .Openness in Fix(F(f)): Let q 2 sn
(p ; f), and let qi 2 Fix(F(f)) with qi ! q. Thenqi 2i P (f) by 
ontinuity, and hen
e (qi ; f) �i (q ; f) � (p ; f) by Proposition 2.2. Thusqi 2i sn
(p ; f).Independen
e of index: Suppose that (p ; f) � (q ; g) by a path pt and an isotopy ft.For ea
h integer m, de�ne Im = ft 2 [0; 1℄ : I(pt ; ft) = mg. The result will be proved byshowing that ea
h Im is open in [0; 1℄. 10



Suppose then that there is some Im whi
h is not open, and pi
k a 2 Im n Int(Im).By the �rst part of the proof, there exist � > 0 and an open subset U of Mk withU \ Fix(F(fa)) = sn
(pa ; fa) and N(sn
(pa ; fa); �) � U .For ea
h i � 1 de�ne Vi = N(sn
(pa ; fa); �=2i). Then V 1 n Vi is 
ompa
t and disjointfrom Fix(F(fa)) for ea
h i, so there exist numbers Æi > 0 with d(x;F(fa)(x)) > Æi for allx 2 V 1 n Vi. It is therefore possible to pi
k a sequen
e ti ! a in [0; 1℄ with ti 62 Im andFix(F(ft)) \ V 1 = Fix(F(ft)) \ Vi for all t between ti and a. Write fi for fti and pi forpti .Now I(pa ; fa) = index(V1;F(fa)) = index(V1;F(fi)) = index(Vi;F(fi))for all i by the homotopy and ex
ision properties of the index. The required 
ontradi
tionwill be obtained by showing that Fix(F(fi)) \ Vi =i sn
(pi ; fi), so that I(pi ; fi) =i m.a) To show that sn
(pi ; fi) �i Fix(F(fi)) \ Vi: if not, then (taking a subsequen
eif ne
essary) there exist points qi 2 sn
(pi ; fi) \ (Mk n V1) with qi ! q 2 Mk n V1.Now (qi ; fi) � (pi ; fi) � (p ; f), and so (ft; ti;qi) is a strong approximating family from(p ; f) to (q ; fa). It follows by Proposition 2.2 that (q ; fa) � (p ; f) � (pa ; fa). Thusq 2 sn
(pa ; fa), 
ontradi
ting q 62 V1.b) To show that Fix(F(fi)) \ Vi �i sn
(pi ; fi): if not, then (taking a subsequen
e ifne
essary) there exist points qi 2 Fix(F(fi)) \ Vi n sn
(pi ; fi) with qi ! q 2 Mk , andq 2 sn
(pa ; fa) by de�nition of the Vi. Thus qi 2i P (fi), and it follows that (qi ; fi) �i(q ; fa) by Proposition 2.2. Thus (qi ; fi) �i (pa ; fa) � (pi ; fi), so that qi 2i sn
(pi ; fi),whi
h is a 
ontradi
tion.2.3 The unremovability theoremTheorem 2.4 LetM be a 
ompa
t smooth orientable manifold, and A a 
ompa
t subset ofM . Let (p ; f) be a periodi
 point 
olle
tion whi
h is un
ollapsible, strong Nielsen bounded,and essential. Then (p ; f) is unremovable.Proof. Let g 2 Aut(M;A) be isotopi
 to f , and pi
k a rel A isotopy ft: f ' g. De�neT = ft 2 [0; 1℄ : there exists qt 2 P (ft) with (qt ; ft) � (p ; f)g:The set T is 
losed in [0; 1℄ by Proposition 2.2: sin
e 0 2 T , it therefore suÆ
es to showthat T is also open in [0; 1℄.Fix t0 2 T , and let S = sn
(qt0 ; ft0). By Proposition 2.3, S is 
ompa
t and open inFix(F(ft0)), and index(S;F(ft0)) 6= 0. Choose � > 0 su
h that N(S; �)\Fix(F(ft0)) = S.11



By Proposition 2.2 and the 
ompa
tness of S, there exists � < � su
h that if jt� t0j < �and qt 2 Fix(F(ft)) with d(qt; S) < �, then qt 2 P (ft) and (qt ; ft) � (qt0 ; ft0) � (p ; f).Let N = N(S; �). Then �N is 
ompa
t and disjoint from Fix(F(ft0)), and hen
e thereexists � < � su
h that Fix(F(ft))\�N = ; whenever jt� t0j < �. By the homotopy axiomof the index, it follows that for any su
h t there exists qt 2 N\Fix(F(ft)). By the previousparagraph, qt 2 P (ft) and (qt ; ft) � (p ; f), and hen
e t 2 T whenever jt � t0j < �. ThusT is open in [0; 1℄ as required.Remarks 2.4a) Suppose that (p ; f) is a periodi
 point 
olle
tion 
onsisting of a single periodi
point, and that (p ; f) � (a ; f) for some a 2 A. Then (p ; f) is 
ertainly unremovable(sin
e (a ; f) � (a ; g) by the 
onstant path whenever g is isotopi
 to f rel A), butthe hypotheses of the theorem 
annot be satis�ed, as (p ; f) is not strong Nielsenbounded. This 
ase often needs to be 
onsidered separately in appli
ations.b) An elementary but useful observation is that if A0 is a 
ompa
t invariant subset ofA, then a periodi
 point 
olle
tion whi
h is unremovable rel A0 is also unremovablerel A.3 Criteria for un
ollapsibility and Nielsen boundednessIn this se
tion a number of 
onditions are given whi
h imply the hypotheses of strongNielsen boundedness and un
ollapsibility. These 
onditions require a variety of additionalNielsen-type de�nitions: Nielsen bounded away from a point in A and a regular point inA (De�nition 3.1); Nielsen separated (De�nition 3.2); and irredu
ible (Remarks 3.2 b)).Re
all (Remark 2.3 a)) that, 
ontrary to what is suggested by the terminology, Nielsenbounded implies strong Nielsen bounded.3.1 Conditions for Nielsen boundednessTwo 
onditions are given whi
h imply that a given periodi
 point 
olle
tion is Nielsenbounded away from A. The �rst de�nes what it means for a periodi
 point (p; f) to beNielsen bounded away from a spe
i�
 point a 2 A. Informally it says that not only is p notNielsen equivalent to a, but it is never Nielsen equivalent to a periodi
 point (q; g) with q
lose to a. Proposition 3.1 b) states that being Nielsen bounded away from all 
ompatibleperiodi
 points in A implies that a periodi
 point is Nielsen bounded away from A.The se
ond 
ondition is not on the periodi
 point p, but rather is a 
ondition on apoint a 2 A. Su
h a point is 
alled regular if it is Nielsen equivalent to all nearby periodi
points of all nearby maps. The simplest example of a regular point is an isolated point of12



A. Proposition 3.1 a) states that if a periodi
 point is not Nielsen equivalent to a regularpoint a 2 A, then it is Nielsen bounded away from it.If f 2 Aut(M;A), then let [f ℄ denote its rel A isotopy 
lass.De�nition 3.1 A period n point (p; f) is said to be Nielsen bounded away from a 2 A,if there exists a 
ontinuous positive fun
tion Æ : [f ℄ ! R+ su
h that (p; f) is not Nielsenequivalent in FIX(n) to any periodi
 point (q; g) with g 2 [f ℄ and q 2 N(a; �(g)). A periodn point (a; f) with a 2 A is 
alled regular if there exists a 
ontinuous positive fun
tion� : [f ℄�Z! R+ su
h that for all m 2 Z, (q; g) 2 FIX(mn) and d(q; a) < �(g;m) impliesthat (q; g) is Nielsen equivalent to (a; f) in FIX(mn).Proposition 3.1a) If (p; f) is a period n point whi
h is not Nielsen equivalent to a regular point (a; f),then it is Nielsen bounded away from it.b) If every periodi
 point p� in the periodi
 point 
olle
tion (p ; f) is Nielsen boundedaway from every periodi
 point a 2 A whose period divides that of p�, then (p ; f) isNielsen bounded away from A.
) If every periodi
 point p� in an un
ollapsible periodi
 point 
olle
tion (p ; f) isNielsen bounded away from every periodi
 point a 2 A whi
h is strong Nielsen equiv-alent to p� relative to the empty set, then (p ; f) is strong Nielsen bounded awayfrom A.Proof. For part a), �rst note that if (a; f) is not in FIX(n) then the result follows dire
tly,so assume (a; f) 2 FIX(n). It will be shown that (p; f) is Nielsen bounded away from awith a fun
tion Æ = �(�; n). If this is not the 
ase then (p; f) is Nielsen equivalent to some(q; g) 2 FIX(n) with d(q; a) < �(g; n). By regularity, (q; g) is Nielsen equivalent to (a; f)in FIX(n). By transitivity, (p; f) is Nielsen equivalent to (a; f), a 
ontradi
tion.For part b), assume �rst that the periodi
 point 
olle
tion 
onsists of a single period npoint p whi
h is Nielsen bounded away from every periodi
 point in A whose period dividesn, but is not Nielsen bounded away from A. Then there exists an approximating family(ft: f ' g; ti; qi) with qi ! a 2 A. By 
ontinuity, a is a periodi
 point of g, and hen
eof f , with period dividing n, and so (p; f) is Nielsen bounded away from it. However,�(fti) ! �(g) > 0 and d(qi; a) ! 0, so (p; f) 
annot be Nielsen equivalent to (qi ; fti) forlarge i, a 
ontradi
tion. The generalization to periodi
 point 
olle
tions with multiplemembers is immediate.The proof of part 
) is similar to that of part b). Assume that the periodi
 point
olle
tion 
onsists of a single period n point p whi
h is Nielsen bounded away from everyperiodi
 point in A whi
h is strong Nielsen equivalent to p relative to the empty set. If13



(p; f) is not strong Nielsen bounded away from A, then there is a strong approximatingfamily (ft: f ' g; ti; qi) with qi ! q 2 A. Sin
e (p; f) is un
ollapsible, a is a period npoint of g, and hen
e of f : moreover (qi; fti) � (a; g) � (a; f) relative to the empty set fori suÆ
iently large by proposition 2.2. Hen
e (p; f) is Nielsen bounded away from (a; f),and a 
ontradi
tion follows as in part b).Remarks 3.1a) If A 
ontains no periodi
 points, then it follows that any periodi
 point 
olle
tion isNielsen bounded away from A.b) If there exists B � A su
h that N(B; �) \ A is f -invariant for arbitrarily small �,then it may be possible to prove unremovability rel A nN(B; �) as in Remark 2.4 b).
) By Proposition 3.1 
), if M is a surfa
e and (p ; f) is an un
ollapsible periodi
 point
olle
tion, then it is only ne
essary to 
he
k that ea
h point in the 
olle
tion isNielsen bounded away from all of the periodi
 points of A whi
h have the samebraid type (see [6℄ for the de�nition of braid type and related information).3.2 Criteria for un
ollapsibilityIn this se
tion a 
riterion for un
ollapsibility is given whi
h is frequently useful in appli
a-tions. It is assumed that the periodi
 point 
olle
tion is strong Nielsen bounded away fromA, so that the argument fo
uses on behavior in the 
omplement. The subsequent remarks(Remarks 3.2) 
ontain brief des
riptions of two other methods of showing un
ollapsibility.De�nition 3.2 Let (p ; f) 2 PPC with p 2 A
. Then (p ; f) is Nielsen separated rel Aif any two distin
t points of S� o(p�; f) whi
h have the same period n lie in distin
tfn-Nielsen 
lasses rel A.Lemma 3.2 Let f 2 Aut(M;A), and p0 and p1 be �xed points of fn lying in A
. Thenthere exists � > 0 su
h that if g 2 Aut(M;A) is �-isotopi
 to f rel A, and q0 and q1 are�xed points of gn with d(pi; qi) < � for ea
h i, then p0 and p1 are in the same fn-Nielsen
lass rel A if and only if q0 and q1 are in the same gn-Nielsen 
lass rel A.Proof. Suppose �rst that p0 and p1 lie in the same fn-Nielsen 
lass, and let 
 be a pathin A
 from p0 to p1 with fn(
) ' 
 rel A. Sin
e 
 and fn(
) are bounded away from A,it follows that if � is suÆ
iently small then the path � from q0 to q1 obtained from 
 byadjoining short paths from q0 to p0 and from p1 to q1 satis�es gn(�) ' �.For the 
onverse, suppose that p0 and p1 lie in distin
t fn-Nielsen 
lasses. Let N0 andN1 be disjoint 
oordinate neighborhoods of these two points, ea
h disjoint from A. If � is14



small enough then there are paths �i in Ni from pi to qi, whose images under gn also liein Ni. Now suppose that q0 and q1 lie in the same gn-Nielsen 
lass, and let 
 be a pathfrom q0 to q1 with gn(
) ' 
. Write � = �0 � 
 � ��11 . Sin
e fn(
) is homotopi
 to gn(
)by a homotopy in whi
h the endpoints remain in N0 [ N1, it follows that fn(�) ' �, a
ontradi
tion.Lemma 3.3 Suppose that (p ; f) is strong Nielsen bounded. If (p ; f) is Nielsen separated,then so is (q ; g) whenever (p ; f) � (q ; g).Proof. Let � and � be su
h that n� = n� = n, and i and j be integers between 0 andn � 1. Suppose that (�; i) 6= (�; j). It is required to show that gi(q�) and gj(q�) lie indistin
t fn-Nielsen 
lasses rel A.Let (p ; f) � (q ; g) by a path pt and an isotopy ft: f ' g. Let S be the set of allt 2 [0; 1℄ su
h that f it (pt�) and f jt (pt�) lie in distin
t fnt -Nielsen 
lasses rel A. Then 0 2 S,and S is open and 
losed in [0; 1℄ by Lemma 3.2.Proposition 3.4 If (p ; f) is strong Nielsen bounded and Nielsen separated, then it isun
ollapsible.Proof. Suppose to the 
ontrary that (p ; f) is strong Nielsen bounded and Nielsen sep-arated, but is not un
ollapsible. Let (ft; ti;qi) be a strong approximating family from(p ; f) to (q ; g), where q 62 P (g). Sin
e (p ; f) is strong Nielsen bounded, it follows thatq 2 A
.Suppose �rst that there is some � with q� 62 Pn�(g). Then for i suÆ
iently large, thereare distin
t points of the orbit of qi� whi
h lie in the same fn�ti -Nielsen 
lass by Lemma 3.2applied to g (taking p0 = p1 = q�). This 
ontradi
ts Lemma 3.3.If this is not the 
ase, then there exist distin
t indi
es � and � su
h that the orbits ofq� and q� 
oin
ide (and both have period n� = n� , sin
e the �rst 
ase does not o

ur).Using Lemma 3.2 again, this implies that for i suÆ
iently large there are points on theorbits of qi� and qi� whi
h lie in the same fn�ti -Nielsen 
lass, 
ontradi
ting Lemma 3.3.Remarks 3.2a) Fixed points are trivially un
ollapsible.b) A periodi
 point 
olle
tion (p ; f) 2 PPC(n) 
onsisting of a single period n point issaid to be irredu
ible if there is no proper divisor m of n su
h that there exists a path
 from p to fm(p) for whi
h the loop 
 � fm(
) � : : :� fn�m(
) is homotopi
ally trivial(see for example [23℄). If (p ; f) has the property that the periods of all the points p�15



are distin
t, then say that (p ; f) is irredu
ible if ea
h (p� ; f) is irredu
ible. Supposeall of the periods in (p ; f) are distin
t, and that (p ; f) is strong Nielsen bounded.Then it 
an be shown that if (p ; f) is Nielsen separated, then it is irredu
ible; andif it is irredu
ible, then it is un
ollapsible. There does not seem to be a sensibleextension of the de�nition of irredu
ibility to the 
ase in whi
h the periods of thepoints in the 
olle
tion are not all distin
t.
) A 
ommon situation in examples is that for ea
h n � 1, all of the �xed points offn are in di�erent Nielsen 
lasses. This implies that any periodi
 point 
olle
tionis Nielsen separated. Hen
e for su
h a map any periodi
 point 
olle
tion whi
h isstrong Nielsen bounded is un
ollapsible.d) It is often the 
ase in two-dimensional appli
ations that (p ; f) 
an be shown to beun
ollapsible by using the mutual linking properties of the di�erent periodi
 orbits inthe 
olle
tion. Suppose, for example, that M = D2, that p1 and p2 are �xed pointsof f whi
h lie in di�erent f -Nielsen 
lasses rel A, and that p3 is a period n orbit of fwhi
h has rotation numbers m1=n and m2=n in the annuli D2 n fp1g and D2 n fp2g,with (m1; n) = (m2; n) = 1. Then if ((p1; p2; p3) ; f) is strong Nielsen bounded, itis un
ollapsible. For the 
ontinuations of p1 and p2 
annot 
ollide, sin
e they liein di�erent Nielsen 
lasses; the 
ontinuation of p3 
annot period-divide ex
ept ontothe 
ontinuation of p1, sin
e otherwise its rotation number about p1 would have to
hange dis
ontinuously; and similarly the 
ontinuation of p3 
annot period-divideex
ept onto the 
ontinuation of p2. Similar arguments 
an sometimes be appliedindu
tively to a large 
olle
tion of periodi
 points, using the linking of the orbit ofea
h p� about that of p��1 to rule out period-division of the 
ontinuation of p� (seefor example the proof of lemma 9.9 of [17℄).4 Examples and Appli
ations4.1 First ExamplesThe two examples in this se
tion are intended to illustrate some of the de�nitions, and toshow simple appli
ations of the main theorem and propositions. In the �rst, Theorem 2.4 isused to show the unremovability of a pair of �xed points of a homeomorphism relative to aninvariant set whi
h is minimal (i.e. every orbit in A is dense in A). In the se
ond example,A has a limit point whi
h is �xed, and a �xed point in A
 is seen to be unremovableafter showing that it is unremovable relative to an invariant subset of A, illustratingRemark 3.1 b).Both examples are homeomorphisms of the two-sphere S2, regarded as the Riemannsphere C [ f1g. The origin and the point 1 be
ome the south and north pole, denotedS and N respe
tively. 16



For the �rst example, start with a homeomorphism g:S1 ! S1 whi
h is a Denjoy
ounterexample, so that g has a minimal invariant Cantor set (see for example [10℄).De�ne G: C ! C by G(z) = jzj exp(ig(arg(z))), and extend G to a homeomorphism ofS2. Let A be the minimal invariant Cantor set in the unit 
ir
le (the equator). It willbe shown that ((N; S) ;G) is unremovable relative to A. Observe �rst that it is strongNielsen bounded away from A, sin
e A 
ontains no periodi
 points (Remark 3.1 a)). NowN and S lie in distin
t G-Nielsen 
lasses rel A. To see this, note that for any path 
from N to S in A
, the �rst gap of A through whi
h it passes is a well-de�ned, homotopyinvariant notion. The a
tion of G is su
h that this gap is di�erent for f(
), and so 
 andf(
) are never homotopi
 rel endpoints. Thus ((N; S) ;G) is Nielsen separated, and hen
eun
ollapsible by Proposition 3.4. Finally, ea
h of the two �xed points has G-index +1,and hen
e I((N; S) ; G) = 1 by the produ
t property of the index. The periodi
 point
olle
tion is therefore essential, and hen
e unremovable by Theorem 2.4. In parti
ular,any homeomorphism whi
h is isotopi
 to Grel A has at least two �xed points.For the se
ond example, �x for ea
h n � 1 a 
ir
le homeomorphism hn:S1 ! S1 su
hthat the rotation number �(hn) is non-zero, and that hn has either a periodi
 orbit or aDenjoy minimal set (equivalently, hn does not have a �xed point or a dense orbit). De�neH on the 
ir
le jzj = 1=n by H(z) = exp(ihn(arg(z)))=n, and extend to a homeomorphismH : C ! C whi
h has only two �xed points, N and S. For ea
h n � 1, let An be a periodi
orbit or Denjoy minimal set in the 
ir
le By a similar argument to that used in the �rstexample, it 
an be seen that N is is unremovable relative to An for any n, and thus isunremovable rel A = SnAn [ fSg.4.2 Nielsen equivalen
e to points in AThis example illustrates the importan
e of the Nielsen boundedness hypothesis. A positiveindex �xed point p in A
, whi
h is alone in its Nielsen 
lass and is not Nielsen equivalent toany point in A is shown to be removable. By Theorem 2.4 it follows that p is not boundedaway from A: in fa
t, it is not Nielsen bounded away from any a 2 A.Let B = [0; 2℄� S1 be an annulus of width 2 with 
oordinates (s; �), and denote itsinterior Bo = (0; 2)� S1. De�ne �: (0; 2)! R by�(s) = ( log(s) if 0 < s � 1� log(2� s) if 1 � s < 2;and � : Bo ! Bo by �(s; �) = (s; �+ �(s)). Thus � twists the interval (0; 2)� f0g aroundthe annulus in�nitely many times.De�ne a 
lass of allowable homeomorphisms g : B ! Bg(s; �) = (s+ �(s; �); �+ 
(s; �))17



by imposing that � and 
 satisfy�(s; �)s ! 0; 
(s; �)! 0as s ! 0 uniformly in � and analogous 
onditions near the other boundary of B: the
onditions on 
 just say that g is the identity on �B. Noti
e that, given any 
ow on Bwhi
h is �xed on �B, the time parameterization may be adjusted so that the time onemap of the 
ow is an allowable homeomorphism.For any allowable g, de�neG(z) = ( � Æ g Æ ��1 if z 2 Boz if z 2 �B:Then the 
onditions on �(s; �) and 
(s; �) imply that G is a homeomorphism of B. Tosee this, simply write out the expression for G(s; �) expli
itly in the 
ase s 2 (0; 1), andobserve that G(s; �)! G(0; �) as s ! 0 and G(s; �) ! G(2; �) as s ! 2 for ea
h �xed �.Hen
e G is a 
ontinuous bije
tion, and therefore a homeomorphism.
Figure 1: Flows on the annulus with time one maps g0 (left) and g1 (right)Now let  0;t and  1;t be 
ows with traje
tories as shown in Figure 1 a) and b) re-spe
tively. Adjust the time parameterization so that their time one maps, g0 and g1, areallowable homeomorphisms, and so that g0 and g1 agree on I = [0; 2℄� f0g. By 
ontinu-ously deforming the �rst 
ow into the se
ond, an isotopy gt: g0 ' g1 relative to I [�B 
anbe 
onstru
ted in su
h a way that ea
h gt is also allowable. The isotopy Gt = � Æ gt Æ ��1on Bo 
an thus be extended to the identity on �B, and this extended isotopy is relativeto �(Io) [ �B. Let A = �(X) [ �B, where X = o(x; g0) = o(x; g1) is the orbit of somepoint x in the interior of I .Let p be the unique �xed point of G0 in A
, whi
h is alone in its G0-Nielsen 
lassrelative to A and has index +1. It must be removable rel A as G1 has no �xed point in A
.Further, it is easy to 
he
k that (p ;G0) is not Nielsen equivalent to any a 2 A. Informallyspeaking, p has been removed by an isotopy whi
h pushes it onto all of A despite the fa
tthat it is not Nielsen equivalent to any point in A.18



4.3 An in�nite orbit with an unremovable horseshoeThis example is due to Mi
hael Handel (personal 
ommuni
ation and [20℄), and illustrateswhat he 
alls a `homotopy horseshoe'. It may be viewed as arising from a Nielsen-Thurstontype theory for mapping 
lasses with `translation ends' on non
ompa
t surfa
es [21℄ (
f.[12℄). The example 
onsists of a homeomorphism 	:D2 ! D2 of the two-disk. The
ompa
t invariant set A is the 
losure of a single orbit traveling from one point on �D2 toanother. The nonwandering set � of 	 in the interior of D2 is a Smale horseshoe, and istherefore a Cantor set on whi
h the dynami
s is 
onjugate to the full shift on two symbols:it will be shown that all of the periodi
 points in � are unremovable relative to A.Write D2 = [0; 1℄� [�1; 1℄, and de�ne T :D2 ! D2 by T (x; y) = (px; y). Set x0 =(1=2; 0), and write xi = T i(x0) for ea
h integer i, so that X = fxi : i 2 Zg is the orbit ofx0 under T . Let A be the 
losure of X , so that A = X [ f�g [ f!g, where � = (0; 0) and! = (1; 0).The rel A isotopy 
lass of 	 will be that of D Æ T , where D is a 
lo
kwise Dehn twistabout a simple 
losed 
urve whi
h is 
ontained in (1=4; 1= 4p2) � [�1; 1℄, and bounds adisk 
ontaining x0 and x1. The 
onstru
tion of an expli
it map 	 in this isotopy 
lassgeneralizes that of [13℄ from the 
ase of a periodi
 orbit to that of an in�nite dis
rete orbit.For ea
h i 2 Z, let Ri = [ai; bi℄ � [�1=2; 1=2℄ be a `thin' re
tangle whi
h 
ontains xi butno other points of X , and let Bi = [bi; ai+1℄� [�1=2; 1=2℄ be a re
tangle whi
h joins Ri toRi+1. Then 
onstru
t 	 in the isotopy 
lass of D Æ T in su
h a way that (see �gure 2)a) 	(Ri) � Ri+1, and 	 a
ts as a stri
t 
ontra
tion on Ri for ea
h i.b) 	(Bi) \ Bj is only non-empty when this is required by the isotopy 
lass: that is	(Bi) interse
ts only Bi+1, ex
ept in the 
ases i = �2 and i = 0, where 	(Bi) alsointerse
ts B0.
) When 	(Bi) \ Bj 6= ;, then horizontal and verti
al lines in Bi \ 	�1(Bj) are sentto horizontal and verti
al lines in Bj , with a uniform expansion and 
ontra
tionrespe
tively.d) 	 agrees with T on �D2: all of the interior periodi
 points of 	 lie in the re
tanglesBi (in fa
t they all lie in B0).Noti
e that the image of B0 
rosses over B0 as in a Smale horseshoe. Let � be theresulting 
ompa
t invariant set (i.e. the set of points whose entire orbit lies in B0). Everyperiodi
 point in � has index �1. Moreover, it 
an be shown (see the next paragraph),�rst, that all of these periodi
 points are Nielsen bounded away from � and ! (with theex
eption of the �xed point labeled q in �gure 2, whi
h is strong Nielsen equivalent to allof the �xed points on �D2); and se
ond, that for ea
h n, all of the �xed points of 	n in �19
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Figure 2: Constru
tion of the homeomorphism 	lie in distin
t 	n-Nielsen 
lasses rel A. Sin
e the fundamental group of D2 nA is free, andhen
e has trivial 
enter, this se
ond fa
t also implies that ea
h of the periodi
 points in� is alone in its strong Nielsen 
lass (Remark 2.1 f)). Hen
e any periodi
 point 
olle
tion(p ;	) for whi
h ea
h p� is an interior periodi
 point distin
t from q is strong Nielsenbounded, un
ollapsible (by Proposition 3.4), and essential, and hen
e is unremovable byTheorem 2.4. In parti
ular, any homeomorphism in this isotopy 
lass has a periodi
 orbitof ea
h braid type whi
h is present in Smale's horseshoe.There are at least two ways to prove the two assertions in the previous paragraph. The�rst is to use the a
tion of 	 on �1(D2nA) in 
onjun
tion with the symboli
 des
ription of� to 
ompute twisted 
onjuga
y 
lasses dire
tly. Di�erent periodi
 points in � will havenonequivalent 
lasses implying that the periodi
 points are in di�erent Nielsen 
lasses.Further, none of these 
lasses 
ontain a representative 
ontaining just the generators near� or those near !. This implies that the periodi
 points 
annot be Nielsen equivalent to aperiodi
 point near � or !, i.e. the periodi
 points are bounded away from � and !. These
ond method of proof [22℄ is to adapt the Bestvina-Handel algorithm [3℄ to the 
ase ofsu
h an in�nite orbit X to 
onstru
t a pseudo-Anosov-like representative � of the isotopy
lass whi
h is essentially the same as 	 (see [21, 12℄), and then to imitate the usual prooffor pseudo-Anosov maps by lifting the invariant laminations to the universal 
over [19℄.4.4 Unremovability relative to a generalized adding ma
hineIn this se
tion, a homeomorphism �:D2 ! D2 is de�ned whi
h has a minimal invariantCantor set A, relative to whi
h all of the periodi
 points of � are unremovable. Therestri
tion of � to A is 
onjugate to a generalized adding ma
hine, but (even when aparti
ular 
onjuga
y 
lass of adding ma
hine has been 
hosen) there are in�nitely many
hoi
es during the 
onstru
tion whi
h in
uen
e the isotopy 
lass of � relative to A. Fromthe point of view of Nielsen-Thurston theory, � may be thought of as the analogue of aNielsen-Thurston 
anoni
al representative of a redu
ible isotopy 
lass whi
h has in�nitelymany 
omponents. For the sake of brevity, it will be assumed that the reader is familiarwith Nielsen-Thurston theory: more information 
an be found in [11, 6℄.20



The restri
tion �:A! A falls into the 
lass of minimal dynami
al systems whi
h aretermed generalized adding ma
hines (the terms odometer and dial are also used). Thesuspension 
ows of these systems are 
alled generalized solenoids. Generalized addingma
hines have a long history in dynami
s. They arise naturally in area preserving mapsof the plane, where one �nds in�nite nested families of ellipti
 periodi
 orbits, ea
h onerotating about the one before it in the family. The adding ma
hine arises as a limit of theseorbits (see [4℄ Se
tion 7). The suspension of this situation arises generi
ally in Hamiltonian
ows [27℄. Generalized adding ma
hines as minimal dynami
al systems have also beenstudied extensively in the topologi
al dynami
s literature. Bues
u and Stewart [8℄ showthat whenever A is a 
ompa
t Lyapunov stable transitive invariant set for a dis
retedynami
al system f :X ! X , where X is lo
ally 
ompa
t and lo
ally 
onne
ted, thedynami
s of f on the 
omponents of A is topologi
ally 
onjugate to a generalized addingma
hine.The 
onstru
tion of a disk homeomorphism detailed here is a generalization of thesituation on whi
h Birkho� 
ommented, and is quite familiar from examples of Kupka-Smale di�eomorphisms with no sour
es or sinks [5, 14, 30℄ and related 
onstru
tions [15℄.The �rst step is to de�ne a family of nested disks in D2 on whi
h the a
tion of � willsubsequently be de�ned. The nested disks will be indexed symboli
ally in the followingway. Let n0 = 1, and �x a list (ni)i�1 of integers with ni > 1 for ea
h i. For ea
h k � 0,de�ne Sk � Zk by Sk = f(s1; s2; : : : ; sk) : 1 � si � nig, and extend this de�nition to the
ase k =1 in the obvious way. An allowable sequen
e s is de�ned to be an element of Skfor some k 2 N[f1g. For 1 � k <1, the proje
tion p:Sk ! Sk�1 is de�ned by droppingthe last element of the sequen
e, so p(s1; : : : ; sk) = (s1; : : : ; sk�1).For ea
h k 2 N[f1g, the addition map �k:Sk ! Sk adds one to s1 and 
arries to theright: that is, �k((s1; : : : ; sk)) = (t1; : : : ; tk), whereti = ( si + 1 if sj = nj for all j < isi otherwise.Equipping Sk with the produ
t topology, ea
h �k is a minimal homeomorphism of Sk (fork 6=1, there is only one orbit of �k). In the 
ase k =1, the dynami
al system (S1; �1)is 
alled the generalized adding ma
hine des
ribed by the list (ni). Distin
t lists 
an giverise to 
onjugate adding ma
hines [8, 9℄.It will be 
onvenient in what follows to say that n (
ir
ular) subdisks D1; : : : ; Dn ofa (
ir
ular) disk D are pla
ed regularly in D if they are mutually disjoint, all have thesame radius, and have 
enters equidistant from the 
enter of D and at angles 2�j=n. (Inparti
ular, this means that their radii are less than half that of D). Let D = D2 be theunit disk, and pla
e n1 disks, labeled Ds for s 2 S1, regularly in D. In ea
h of thesen1 disks Ds, pla
e regularly n2 disks labeled Dt, where t 2 S2 and p(t) = s. Pro
eed21



indu
tively: at the ith stage of the 
onstru
tion, for ea
h s 2 Si�1, pla
e regularly in Dsni disks labeled Dt, where t 2 Si and p(t) = s. Sin
e the diameters of the disks tend tozero as i!1, it follows that A = \k�1 [s2SkDsis a Cantor set, and there is a natural homeomorphism h:A ! S1 given by h(x) =(s1; s2; : : :), where x 2 D(s1;:::;sk) for ea
h k.For ea
h �nite allowable sequen
e s 2 Sk, let Cs be an annular 
ollar of the boundaryof Ds, 
hosen in su
h a way that all of these 
ollars are mutually disjoint. Let D̂s be the
losure of the disk Ds minus the disks and 
ollars inside it,D̂s = 
l(Ds n [t:p(t)=s(Dt [ Ct)):Then de�ne the kth level of the disk 
olle
tion to beLk = [s2Sk D̂s:Figure 3 shows two stages of the 
onstru
tion with n1 = 3 and n2 = 2.
(3, 1)

(2)D

(1, 1)

D(1)

D(1, 2)D

C

C(1)Figure 3: Initial stages of the 
onstru
tion of � with n1 = 3 and n2 = 2Now de�ne the homeomorphism �:D2 ! D2 by de�ning it on ea
h level Lk and on ea
hof the 
ollars. For ea
h k, the restri
tion �:Lk ! Lk is required to satisfy �(D̂s) = D̂�k(s)for ea
h s 2 Sk. Thus the 
olle
tion of D̂s with s 2 Sk are 
y
li
ally permuted by � withperiod mk = Q1�i�k ni. Hen
e �mk is a homeomorphism of ea
h D̂s, whi
h is required tobe either pseudo-Anosov, or an adapted �nite order map, with the latter being de�ned asfollows.If B is a disk with m regularly pla
ed holes, then an adapted �nite order map of Bis a rigid rotation of angle 2�j=m for some j, followed by the time one map of the 
ow22



depi
ted in �gure 4 for the 
ase m = 3. Note that j must be 
hosen 
oprime to m, inorder that the holes are 
y
li
ally permuted by the map. By making the time one map ofthe 
ow an irrational rotation on all of the boundary 
omponents of B, it 
an be arrangedthat the only periodi
 point is the �xed point at the 
enter of B.
Figure 4: The 
ow used in the 
onstru
tion of an adapted �nite order mapNow extend � over the 
ollars Cs in su
h a way that there are no periodi
 points inthe interiors of the 
ollars (so for s 2 Sk , �mk 
ould push all orbits from one boundary ofCs to the other). No other 
onstraint is pla
ed on the behavior of � on the 
ollars: up toisotopy, this is de�ned by the number of Dehn twists along their 
ore 
ir
les.Be
ause the diameters of the disks tend to zero, there is a unique extension of � overA whi
h makes it a homeomorphism of D2, and the restri
tion �:A! A is 
onjugate viah:A ! S1 to the generalized adding ma
hine �1:S1 ! S1. Noti
e that the isotopy
lass of � relative to A is determined by the pre
ise 
hoi
e of adapted �nite order orpseudo-Anosov maps on ea
h level, and by the number of Dehn twists in the 
ollars. Inparti
ular, there are un
ountably many su
h 
hoi
es for ea
h 
onjuga
y 
lass of generalizedadding ma
hine.The map � has one periodi
 orbit on ea
h �nite order level, and in�nitely many periodi
orbits on ea
h pseudo-Anosov level. It will be shown that ea
h of these periodi
 orbits isunremovable relative to A. Noti
e �rst that A 
ontains no periodi
 points, and hen
e allof the periodi
 points are Nielsen bounded away from A (Remark 3.1 a)). Next, by aneasy extension of the usual Nielsen-Thurston 
ase (see [7℄ Se
tion 1), no periodi
 point inthe interior of a level Lk is in the same Nielsen 
lass rel A as any other periodi
 point,under any iterate of �. By 
onstru
tion, these periodi
 points all have non-zero index.Periodi
 points on the boundary of a level Lk 
ause slightly more diÆ
ulty. They maylie in the same Nielsen 
lass as other points of the same orbit (on the same boundary
omponent), and may not therefore be Nielsen separated: they are, however, irredu
ible(Remark 3.2 b): see [7℄ where irredu
ible is 
alled \un
ollapsible"). They may also lie inthe same Nielsen 
lass as periodi
 points on the other boundary of the 
ollar Cs to whi
h23



they belong. It is argued in [7℄ that in this 
ase also, the total strong Nielsen 
lass hasnon-zero index.Thus if p is any periodi
 point of �, the periodi
 point 
olle
tion (p ;�) is strong Nielsenbounded, irredu
ible (and hen
e un
ollapsible), and essential. It follows by Theorem 2.4that (p ;�) is unremovable. Thus any homeomorphism whi
h is isotopi
 to � rel A has aperiodi
 orbit of ea
h braid type whi
h is exhibited by �. By analogy with the Nielsen-Thurston theory, it would be possible to start with a des
ription of the rel A isotopy 
lass(say by its a
tion on a nested family of 
ir
les), and then 
onstru
t � as the dynami
allyminimal representative of the 
lass. This point of view 
onne
ts with the results of Belland Meyer [2℄, who show that stable generalized adding ma
hines embedded in planehomeomorphisms are always the limit of periodi
 points. In the 
lass of examples presentedhere, all of these periodi
 points are unremovable relative to the minimal set. The pre
isenature of the periodi
 points depends on the isotopy 
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