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Abstract

Let f be an orientation-preserving homeomorphism of a compact orientable mani-
fold. Sufficient conditions are given for the persistence of a collection of periodic points
under isotopy of f relative to a compact invariant set A. Two main applications are
described. In the first, A is the closure of a single discrete orbit of f, and f has a
Smale horseshoe, all of whose periodic orbits persist; in the second, A is a minimal
invariant Cantor set obtained as the limit of a sequence of nested periodic orbits, all
of which are shown to persist under isotopy relative to A.

AMS Classification scheme numbers: 58F20, 58F15

1 Introduction

Dynamical properties which are exhibited by every homeomorphism in an isotopy class are
said to be isotopy stable. The identification of isotopy stable features makes it possible
to obtain a great deal of information about the dynamics of a map given only limited
algebraic or combinatorial data concerning its isotopy class. The simplest example of this
is provided by the Lefschetz fixed point theorem whose conclusion, from this point of
view, is the existence of an isotopy stable fixed point. Nielsen fixed point theory yields
a refinement of the Lefschetz theorem, by means of which it may be possible to prove
the isotopy stability of a collection of several fixed points. Somewhat surprisingly, the
application of this theory to periodic points is comparatively recent, with the work of
Halpern [18], Jiang [23] and others. The proceedings [28] give a good picture of the
current state of the theory.

Unremovability is the strongest sense in which a periodic point can be isotopy stable.
It arises from the bifurcation-theoretic notion of following a periodic point through a
continuously varying family of homeomorphisms: if f; is such a family (i.e. an isotopy),

and t — py is a path in M with the property that p; is a periodic point of f; with period n



for all ¢, then the pairs (po, fo) and (p1, f1) are said to be strong Nielsen equivalent. The
pair (p, f) is said to be unremovable if every ¢ isotopic to f has a periodic point ¢ such
that (p, f) and (¢, ¢) are strong Nielsen equivalent. In other words, any ¢ isotopic to f
has a periodic point ¢ which shares with p any dynamical property which is preserved as
it is followed continuously through a family of homeomorphisms.

Using bifurcation-theoretic techniques, sufficient conditions for the unremovability of
a periodic point of a C''-diffeomorphism were given by Asimov and Franks [1]. Their work
was subsequently generalized, using more traditional Nielsen-theoretic methods, to col-
lections of periodic points of homeomorphisms under isotopy relative to a finite invariant
set [16]. By means of the Nielsen-Thurston classification theorem, necessary and suffi-
cient conditions have been given for the unremovability of fixed points [24] and periodic
points [7] of surface homeomorphisms. In this paper, sufficient conditions are given for
the unremovability of collections of periodic points under isotopy relative to a general
compact invariant set. The main application anticipated for these results is to surface

homeomorphisms, but the results are valid for manifolds of any dimension greater than
one.
Nielsen theory relative to an invariant set A has been considered by several authors,

and is used to find lower bounds on the number of periodic orbits in the whole space, the
invariant set, and the complement of the invariant set. [31] is a good survey article for the
interested reader. In contrast to the approach of such papers, there is no requirement here
that A be an Absolute Neighborhood Retract. In fact, 4 is a Cantor set in many of the
more substantial applications. This level of generality is achieved by finding conditions
which imply that Nielsen classes remain bounded away from A.

The bifurcation-theoretic approach provides a useful heuristic for understanding the
conditions for unremovability which are presented here. Given a periodic point p of a
homeomorphism f, one can ask how the periodic point might disappear as it is followed
through a family of homeomorphisms. There are three obvious scenarios under which this
can occur. In the first, the continuation of p collides with the continuation of a periodic
point on a different orbit, and the two annihilate each other (saddle-node bifurcation). For
this to happen two conditions must be satisfied. First, the two periodic points must be
able to collide and so they must lie in the same strong Nielsen equivalence class (that is,
the topological manner in which they are embedded in M \ A must be the same). Second,
in order that they can annihilate each other, the sum of their periodic point indices must
be zero. Thus this scenario can be ruled out by requiring that the set of all periodic
points of f which are strong Nielsen equivalent to p has non-zero index. This condition is
expressed by saying that p has an essential strong Nielsen class.

The second scenario is that the continuation of p collides with the continuation of
another point on the same orbit (period-dividing bifurcation). This is ruled out by the

uncollapsibility hypothesis, a precise topological statement that the periodic point never



period divides. This high-level condition is used in the statement of the theorem because
there are a number of different hypotheses, often verifiable in practice, which imply un-
collapsibility. Some of these are described in Section 3. Notice that a fixed point cannot
period divide, and hence this condition only comes into play when considering periodic
points of period greater than one.

The final scenario is that the continuation of p runs into A. If A is topologically simple,
then p will run into a periodic point in A which is strong Nielsen equivalent to p, and in
such cases p should be considered to be unremovable. In cases where the topology of A and
the dynamics of f restricted to A are sufficiently complicated, there are other possibilities
to consider: the continuation of p could limit to a non-trivial continuum in A, or to a
periodic point to which it is not strong Nielsen equivalent. Disallowing these possibilities
requires a new Nielsen-theoretic ingredient, strong Nielsen boundedness. Conditions which
imply strong Nielsen boundedness are given in Section 3.

The main theorem (proved in Section 2.3) is:

Theorem 2.4 For an orientation preserving homeomorphism of a compact smooth ori-
entable manifold M with compact invariant set A, a periodic point collection which is
uncollapsible, strong Nielsen bounded, and essentialrel A is unremovablerel A.

Notice that the theorem is stated for (finite) collections of periodic points, rather than
single periodic points as in the above discussion. There are two reasons for working with
periodic point collections. First, the persistence of a collection means more than that
the individual orbits persist: it also implies the persistence of the topological relationship
between those orbits. This is often useful in applications. Second, proving the unremov-
ability of a collection of periodic points is sometimes easier than proving their individual
unremovability, since the topological relationship between the orbits can present additional
obstructions to removability (see Remark 3.2 d)).

As noted above, the main contributions of this paper are techniques for doing Nielsen
theory relative to topologically complicated invariant sets A. The principal new feature
in this case is the third scenario discussed above. In finding conditions that disallow this
scenario it does not suffice to require that the given periodic point is not Nielsen equivalent
to any points in A (see the example in Section 4.2). Rather, one must restrict attention
to the Nielsen bounded classes, i.e. the classes that are inside the complement of A for
any isotopic map. In finding conditions that imply Nielsen boundedness it is necessary
that the dynamics on A be known: one cannot hope to do Nielsen theory on noncompact
spaces without information about the action on the “ends”. The action on the ends is
clear when the problem is stated in terms of isotopies relative to a compact invariant set.
Working relative to an invariant set has the added advantage of making the the fixed point
index straightforward; the index of a fixed point rel A is just the index in M. However,
this point of view has its own complications. Contrary to the situation in the absence of a
selected invariant set, if A contains accumulation points then tworel A homeomorphisms

can be arbitrarily close (as homeomorphisms of M) and still not be isotopic rel A.



Working in the noncompact space A° does have one very convenient feature. If two
periodic points are said to be Nielsen equivalentrel A if they are Nielsen equivalent in A°,
then most of the standard aspects of Nielsen theory (excluding the index) go through with
little change. A familiarity with this standard Nielsen theory will be assumed: [23] is an

excellent reference.
Section 2 consists of definitions, basic lemmas and the proof of the main theorem,

which is based on the approach of [16]. Conditions which imply Nielsen boundedness and
uncollapsibility are then described in Section 3. Finally, a number of examples and appli-
cations of the main theorem are presented in Section 4. Those of Sections 4.1 and 4.2 are
relatively simple, and are intended to illustrate some of the definitions and the application

of the main theorem; more substantial applications are given in Sections 4.3 and 4.4.

2 The Unremovability theorem

2.1 Definitions

Let M be a compact smooth orientable manifold with metric d, and A be a compact subset
of M. The complement of A in M is denoted A° = M \ A. Let Aut(M, A) denote the
space of orientation preserving homeomorphisms f: (M, A) — (M, A) equipped with the
uniform metric p induced by d. For each integer n > 1, let P,(f) be the set of (least)
period n points of f: thus P,(f) is an open subset of Fix(f™). The orbit of a point p € M
under f is written o(p, f) = {fi(p): i € Z}.

In this paper, collections of k& > 1 distinct periodic points will be considered: their
periods will be encoded in a vector n = (nq,...,ng). The reader may find it helpful to
concentrate initially on the case k = 1. Write 7y, (f): M* — M* for the map f™1 x---x f,
and define P,(f) C M” for the set of points p = (p1,...,px) such that p, € P,_(f) for
each o < k, and the points p, all lie on different orbits of f: clearly P,(f) is an open
subset of Fix(Fy(f)). In practice, whenever k and n are either arbitrary or fixed without
ambiguity, the subscripts will be dropped and the symbols F(f) and P(f) used. Moreover,
the symbols « and § will always be taken to range over {1,...,k}, and expressions such
as ‘for some o’ or “for all 3’ should be interpreted accordingly. The product metric on M*
will also be denoted d. Finally, in an abuse of notation, p € A€ will be taken to mean that
Po € A for all a, and p € A° to mean the converse, that p, € A for some a.

If f € Aut(M,A) and p € P(f), then the pair (p, f) € M* x Aut(M, A) is referred
to as a periodic point collection: the set of all periodic point collections with periods n is

denoted PPC(n) (or just PPC):

PPC = {(p,f) € M* x Aut(M, A): p € P(f)}.



Similarly FIX(n) (or just FIX) is defined as:

FIX = {(p, f) € M* x Aut(M, A): p € Fix(F(f))},

and thus PPC is an open subset of FIX.

Isotopies (respectively homotopies) will be written in the form f;: f ~ g. This means
that there are homeomorphisms (respectively maps) fi: M — M for each ¢ € [0, 1], such
that the map M xI — M given by (p,t) — fi(p) is an isotopy (respectively homotopy) from
f to g. Isotopies and homotopies will usually be taken relative to A: in this case, all the
maps f; are required to agree pointwise on A. Isotopies and homotopies of arcs and paths
relative to A are defined similarly: such an arc or path is allowed to pass through A, but
intersections with A must remain fixed throughout the isotopy or homotopy. To be more
precise, if a:[0,1] = M is a path, and «(t*) € A for some t* € [0, 1], then 3(t*) = a(t*)
for any path § which is homotopic to arel A. A homotopy {F;}: F(f) ~ F(g) is said to
be relative to A if

ﬂ-i(]:t(wh RN Y2 7 PR 7$k>) — fnl(a) :gnl(a)

for a € A and all 1 < i < k where 7; : M* — M is the projection onto the i*" component.

Homotopy of paths in M”* relative to A is defined similarly.
Two fixed points p,q € A° of an iterate f™ of f are said to lie in the same f"-Nielsen

classrel A if they lie in the same Nielsen class for the restriction of f to A° in the usual
sense:

Definition 2.1 Suppose that p,q € Fix(f™) N A° for some integer n > 1. Then p and ¢
lie in the same f™-Nielsen classtel A if there is a path a in A€ from p to ¢ such that «

and f" o« are homotopic relative to endpoints in A°.

By contrast, the definitions of two periodic point collections being Nielsen equivalent
or strong Nielsen equivalent rel A involve workingrel A rather than in A°. In particular,

this means that the definitions are valid even if some of the points in the collection lie in

A.

Definitions 2.2 Two elements (p, f) and (q,¢) of FIX are Nielsen equivalent rel A if
there exists a path @ in M* from p to q, and a homotopy Fy: F(f) ~ F(g) relative to A
such that the path ¢ — F;(«(t)) is homotopic (with fixed endpoints) to arel A.

Two elements (p, f) and (q,g) of PPC are Strong Nielsen equivalentrel A, written
(p,f) ~ (q,9), if there exists a path v in M* from p to q, and arel A isotopy fi: f ~ ¢
with y(¢t) € P(f) for all . It will be said that (p, f) ~ (q,9) by the path v and the
isotopy fi. The Strong Nielsen Class of an element (p, f) € PPC is defined to be

sne(p, f)={ae€ P(f): (a,f)~(p,f)}



Remarks 2.1

a)

Notice that in Definition 2.2 there is no requirement that the periodic points or the

paths lie in A°.
The Tel A’ will be dropped where there is no danger of confusion.

It is clear that Nielsen equivalence and Strong Nielsen equivalence are equivalence
relations on FIX and PPC respectively. The relation of Nielsen equivalence corre-
sponds to what is normally termed correspondence of Nielsen classes under a homo-
topy (see [23]). The equivalence classes under strong Nielsen equivalence are just

the path components of PPC.

It can easily be seen that Strong Nielsen equivalence implies Nielsen equivalence:

simply choose o = v and F; = F(f).

If fis a fixed homeomorphism, then it would seem natural to refer to the set S of
all g in P(f) for which (q, f) is Nielsen equivalent to (p, f) as the Nielsen class of
(p, f). This is not correct because it is not the F(f)-Nielsen class of p in the usual
sense. This remains the case even when each q € S can be shown to be Nielsen
equivalent to (p, f) using a path a in A°: what S is in this case is the union of all
F(f)-Nielsen classes which correspond to that of p under a homotopy. The set S
is the usual Nielsen class if every self-homotopy of F(f) lifts to a self-homotopy in
the universal cover of (M \ A)*: that is, if the Jiang subgroup of F(f) is trivial [23].

This is always the case if the center of the fundamental group of (M \ A)* is trivial.

If (p,f)~ (q,¢),then not only do corresponding periodic points from the two collec-

tions have equal periods, but also the way in which they are embedded in the dynamics of

the homeomorphisms relative to A and to each other are preserved. For example, in the

surface case, the two collections have the same braid types and the same mutual linking

numbers [16]. It is for this reason that strong Nielsen equivalence is a good relation to use

in the definition of unremovability.

Definition 2.3 A periodic point collection (p, f) € PPC is unremouvable if for all g €
Aut(M, A) isotopic to f (rel A), there is some q € P(g) such that (p, f) ~ (q,9).

Remarks 2.2

a)

Notice that the definition of P(f) requires that each p, lies on a different orbit. Thus,
for example, if (p, f) consists of two periodic points p; and py with (p1, f) ~ (p2, f),

then it is possible that (p, f) is not unremovable even though (p1, f) and (p2, f)
are.



b) If (p, f) is unremovable, then so is each (q,¢) with (q,¢9) ~ (p, f).

Definitions 2.4 Let (p,f) € PPC and (q,g) € FIX. A strong approzimating family
from (p,f) to (q,g) is a triple (fi,t;,q°), where f;: f ~ g is an isotopy relative to A;
t; — 1 s a sequence in [0,1]; and q° — q is a sequence in M* with ' € P(f;.,) and
(p,f) ~ (d', f,) for all . An approzimating family from (p,f) to (q,g) is a similar
triple in which f; need only be a homotopy, q' need only lie in Fix(F(f:)), and each
(d°, f:,) need only be Nielsen equivalent to (p, f).

The periodic point collection (p, f) is said to be uncollapsible (relative to A) if when-
ever (q,¢) € FIX and there is a strong approximating family from (p, f) to (q,g), then
(q,g) € PPC. It is said to be strong Nielsen bounded away from A (respectively Nielsen
bounded away from A) if whenever (q,¢) € FIX and there is a strong approximating
family (respectively an approximating family) from (p, f) to (q,g), then q € A°.

Remarks 2.3

a) Since the conditions for an approximating family are weaker than those for a strong
approximating family, it follows that Nielsen boundedness implies strong Nielsen

boundedness.

b) Conditions which imply uncollapsibility, Nielsen boundedness and strong Nielsen

boundedness are given in section 3.

c) If (p, f) is uncollapsible or strong Nielsen bounded, then so is any periodic point

collection (q,¢) which is strong Nielsen equivalent to (p, f).

Recall (see for example [23]) that, generalizing the notion of the index of an isolated
fixed point, there is an index function which assigns an integer index(M, U, f) to each
triple (M, U, f) consisting of a compact manifold M, an open subset U C M, and a map
f: M — M with Fix(f)NoU = 0. The index is defined axiomatically, the properties which

are relevant here being the following:

Normalization index(M, M, f) = L(f), the Lefschetz number of f.
Existence If index (M, U, f) # 0, then Fix(f) NU # 0.
Homotopy If f;: fo ~ f1 is a homotopy such that Fix(f;) N oU = 0 for all ¢, then

index(M, U, fo) = index(M, U, f1).

Excision If V is an open subset of U such that Fix(f) " U = Fix(f) NV, then

index(M, U, f) = index (M, V, f).



Product index(M x N,U x V, f x g) = index(M, U, f) -index(N,V, g).

If F'is an open subset of Fix(f) which is compact (for example an isolated fixed point),
then its index can be defined by index(F, f) = index (U, f), where U is an open subset of
X with U N Fix(f) = F. This definition is independent of the choice of U by the excision
property.

Definitions 2.5 If snc(p, f) is open and closed in Fix(F(f)), then the index of (p, f) is
I(p, f) =index(snc(p, f), F(f)). If I(p, f) exists and is non-zero, then (p, f) is said to

be essential.

As a consequence of Proposition 2.3 below, the index always exists when (p, f) is
uncollapsible and strong Nielsen bounded. The unremovability theorem (Theorem 2.4)
states that if (p, f) is uncollapsible, strong Nielsen bounded, and essential, then it is

unremovable.

2.2 Preliminaries to the unremovability theorem

In this section some preliminary propositions will be stated and proved. The following
notation is adopted: given ¢ > 0 and a subset S of M, the open and closed e-neighborhoods
of S are denoted N (S, ¢) and N (S, ¢) respectively. An isotopy f; is said to be an e-isotopy
if p(fs, ft) < € for all s and ¢: if such an eisotopy exists, then fy and f; are said to
be e-isotopic. Closed disks, circles and annuli centered at the origin in R” are denoted
D) = {z € B: 5] <y}, Sy = {= € B [2] = 5}, and Afa,b) = {= € B" 1 a < || < b}
If fis a map defined in a neighborhood of S, then f, denotes its restriction to S,.

The following topological lemma will be used in proving Proposition 2.2. Its proof
uses a deep topological result, the annulus conjecture (now a theorem, see the comments
in [25] inserted in the version reprinted in the appendix of [26] as well as [29]). We have
a more elementary proof of Proposition 2.2 which is not based on the annulus conjecture,

but it is much longer.

Lemma 2.1 Let f: D(1) — R" be an orientation preserving topological embedding with
f(0) =0, and let n € (0,1). Then there exist ¢ € (0,n) and f : D(1) — R" with [ ~ f
rel {0} by an isotopy supported on N(0,7), and f: id on N(0,¢€).

Proof. Pick ¢ > 0 small enough that D(¢) is contained in f(N(0,7)). Now f, is certainly

a locally flat embedding since it is the restriction of a embedding of D(1), so the annulus
conjecture yields a homeomorphism A : A= A(e,n), where A is the closed region bounded
by S¢ and f(5,).

The construction of f uses a homeomorphism F : A(e, ) — A(e, ) which sends each

circle Sg to itself. Since A f, is an orientation preserving homeomorphism of S, there is an



Alexander isotopy H; : hf, ~ id. Pick o < (n —¢)/2 and for each n — a < 3 < 7, define
Fg = Hy() with ¢ : [n—a,n] — [0, 1] an orientation reversing homeomorphism. Similarly,
using an isotopy of h. to the identity, Iz can be defined for ¢ < 3 < e+ « so that I, = h,
and F.4, is the identity. Finally, for e+ a < 8 <n —a, let Iz =id.

The required [ is defined by letting it equal f on A(n,1), A~1F on A(e,n) and the
identity on D(e). Since (f_lf)77 =id and f_lf(O) = 0 the Alexander trick yields f=!f ~
idrel {0} and so f ~ frel {0}. ]

Note that if H" is the upper half space {¢ € R™ : x,, > 0} then the analog of the
proposition for embeddings f: D(1)N H™ — H™ also holds.

Two main propositions are prerequisites for the proof of the unremovability theorem.
The first is a local result, saying that if (p, f) is a periodic point collection with p € A¢,

then all nearby periodic point collections are strong Nielsen equivalent to (p, f).

Proposition 2.2 Suppose that (p, f) € PPC with p € A°. Then there exists € > 0 such
that whenever g is e-isotopic to frel A, and q € P(g) is e-close to p, then (p, f) ~ (q,9).

In particular, if (p, f) is uncollapsible and strong Nielsen bounded, and there exists a

strong approximating family from (p, f) to (q,¢), then (p, f) ~ (q,9).

Proof. Assume first that the periodic point collections (p, f) and (q,¢) consist of single
fixed points p and ¢ and that p is in the interior of M. Pick § > 0 so that N(p,d) is
bounded away from A and is a coordinate chart in the manifold M. Now pick n < §/5
so that f(N(p,n)) C N(p,d). Using Lemma 2.1 locally, obtain the corresponding ¢ and

a local homeomorphism fthat agrees with f outside N(p,n). Defining fto be f outside
N (p,n) yields a homeomorphism [~ frel ({p} U A) by an isotopy supported on N (p,n)
and f: id on N(p,e).

~

Thus (p, f) ~ (p,f) by the constant path and an isotopy supported on N(p,n). If

o~

fi o f ~ ¢ is an e-isotopy and (g, g) is a fixed point with d(q,p) < ¢, then (q, f) ~ (p, f)
by any path contained in N(0,¢) and the constant isotopy. It remains to show that

o~

(¢, ) ~ (4, 9)-

If f] denotes the isotopy from fto f followed by that from f to g, then f/ : f ~ g
is a (n 4+ €)-isotopy. Thus, in particular, the path ¢t — f/(¢q) is contained in N(q,2n).
Pick local coordinates (and a vector space structure) adapted to the metric for N(q,4n) C

N(p,5n) C N(p,d) with origin ¢ = 0. For z near ¢ define

") = { L—|2/2n if |2] < 29

0 otherwise,



and let ki(z) = z — r(z — fl(q)) fl(q), where the subtraction and multiplication use the

local vector space structure. It is easy to check that k; is an isotopy id ~ id supported on

N(q,4n), with k.(f{(q)) = q for all t. The isotopy ko f/ : f: ¢ is thusrel {¢}, and so

o~

(q,f) ~ (q,¢9) using this isotopy and the constant path.

If p is on the boundary, find f and € using the remark after Lemma 2.1. If ¢ is in the
interior, proceed as above. If ¢ is on the boundary, then the path ¢t — f/(q) is also, and
the isotopy k; can be constructed as above. If p is a periodic point instead of a fixed point,
choose the initial § so that the balls N (f*(p),d) are disjoint charts. The generalization to
periodic point collections is straightforward.

To prove the second sentence of the proposition, note that (q,¢) € PPC and q €
A€ by uncollapsibility and strong Nielsen boundedness respectively. By the first part
of the proposition, (q,g) is strong Nielsen equivalent to all sufficiently close periodic
point collections in the strong approximating family, and hence (p, f) ~ (q,¢) by the

transitivity of ~. 1

The second proposition is a standard form which is needed for any theory of Nielsen
type. It says that the strong Nielsen class of an uncollapsible and strong Nielsen bounded
periodic point collection (p, f) is both open and closed in the appropriate fixed point
set, and thus its index is defined. The index is also defined for any (q,¢) ~ (p, f), by
Remark 2.3 ¢): the second statement of the proposition says that the index is independent
of the choice of periodic point collection in the strong Nielsen equivalence class. The
following notation is used in the proof of this proposition: if i< is a binary relation, and
a(t) and b(7) are expressions dependent on a positive integer ¢, then a(¢) t<; b(7) means

that a(7) > b(¢) for all sufficiently large ¢.

Proposition 2.3 If (p, f) is uncollapsible and strong Nielsen bounded, then snc(p, f) is
compact, and open in Fix(F(f)). If (q,9) ~ (p, f) then I{q,q)=I(p, f).

Proof. Compactness: Let q° be a sequence in snc(p, f) with q' — q € M*. Then there
is a strong approximating family (f; = f,1—1/i,q") from (p, f) to (q, f), and hence
(p,f) ~ (q,f) by Proposition 2.2: that is, (q, f) € snc(p, f). Thus snc(p, f) is closed
in the compact space M.

Openness in Fix(F(f)): Let q € snc(p, f), and let q° € Fix(F(f)) with ' — q. Then
q' €; P(f) by continuity, and hence (q°, f) ~; (q,f) ~ (p, f) by Proposition 2.2. Thus
q' €; sne(p, f).

Independence of index: Suppose that (p, f) ~ (q,¢) by a path p’ and an isotopy f;.
For each integer m, define I, = {t € [0,1]: I(p?, f;) = m}. The result will be proved by
showing that each I, is open in [0, 1].

10



Suppose then that there is some I,, which is not open, and pick a € I, \ Int(/,).
By the first part of the proof, there exist # > 0 and an open subset U of M* with
UnFix(F(f,)) = snc(p®, f,) and N(snc(p®, fu),0) CU.

For each i > 1 define V; = N (snc(p?, f,),0/2"). Then V' \ V; is compact and disjoint
from Fix(F(f,)) for each ¢, so there exist numbers §; > 0 with d(x, F(f,)(x)) > ¢; for all
r eV, \ Vi. It is therefore possible to pick a sequence ¢; — a in [0, 1] with ¢; & I, and
Fix(F(f;)) NV = Fix(F(f;)) N V; for all ¢t between ¢; and a. Write f; for f;, and p* for
p*.

Now

I(p*, fu) = index(Vy, F(f,)) = index(V1, F(f;)) = index(V;, F(fi))

for all 7 by the homotopy and excision properties of the index. The required contradiction
will be obtained by showing that Fix(F(f;)) N V; =; snc(p’, f;), so that I(p’, f;) =; m.

a) To show that snc(p’, f;) C; Fix(F(f;)) N Vi: if not, then (taking a subsequence
if necessary) there exist points q' € snc(p’, f;) N (M* \ V}) with ' — q € M*\ V.
Now (q', fi) ~ (p', fi) ~ (P, f), and so (fi,t;,q°) is a strong approximating family from
(p, f) to (q, fa). It follows by Proposition 2.2 that (q, f.) ~ (p,f) ~ (p*, fa). Thus
q € snc(p?, fu), contradicting q & V.

b) To show that Fix(F(f;)) N V; C; snc(p’, fi): if not, then (taking a subsequence if
necessary) there exist points q' € Fix(F(f;)) N Vi \ snc(p’, f;) with ¢* — q € M*, and
q € snc(p®, f,) by definition of the V;. Thus q' €; P(f;), and it follows that (q', f;) ~;
(a, fa) by Proposition 2.2. Thus (q*, fi) ~i (p*, fu) ~ (p*, fi), so that q' €; snc(p’, fi),

which is a contradiction. |

2.3 The unremovability theorem

Theorem 2.4 Let M be a compact smooth orientable manifold, and A a compact subset of
M. Let (p, f) be a periodic point collection which is uncollapsible, strong Nielsen bounded,

and essential. Then (p, f) is unremovable.
Proof. Let g € Aut(M, A) be isotopic to f, and pick arel A isotopy fi: f ~ g. Define
T ={tc0,1]: there exists q" € P(f;) with (q", f;) ~ (p, f)}-

The set T is closed in [0, 1] by Proposition 2.2: since 0 € T', it therefore suffices to show
that 7" is also open in [0, 1].

Fix to € T, and let S = snc(q™, f;,). By Proposition 2.3, S is compact and open in
Fix(F(fs,)), and index (S, F(ft,)) # 0. Choose 6 > 0 such that N(S,0) NFix(F(f:,)) = S.

11



By Proposition 2.2 and the compactness of 5, there exists n < 6 such that if |t — tp| < 7
and q' € Fix(F(fi)) with d(g’,5) < u, then q € P(fy) and (a, ;) ~ (4, fi)) ~ (B /).

Let N = N(S,n). Then N is compact and disjoint from Fix(F(fy,)), and hence there
exists € < 7 such that Fix(F(f;)) NON = () whenever |t — t5| < e. By the homotopy axiom
of the index, it follows that for any such ¢ there exists q° € NNFix(F(f;)). By the previous
paragraph, q° € P(f;) and (q°, f;) ~ (p, f), and hence t € T whenever |t — tg| < . Thus
T is open in [0, 1] as required. ]

Remarks 2.4

a) Suppose that (p, f) is a periodic point collection consisting of a single periodic
point, and that (p, f) ~ (a, f) for some a € A. Then (p, f) is certainly unremovable
(since (a, f) ~ (a,g) by the constant path whenever ¢ is isotopic to frel A), but
the hypotheses of the theorem cannot be satisfied, as (p, f) is not strong Nielsen

bounded. This case often needs to be considered separately in applications.

b) An elementary but useful observation is that if A’ is a compact invariant subset of

A, then a periodic point collection which is unremovable rel A’ is also unremovable

rel A.

3 Criteria for uncollapsibility and Nielsen boundedness

In this section a number of conditions are given which imply the hypotheses of strong
Nielsen boundedness and uncollapsibility. These conditions require a variety of additional
Nielsen-type definitions: Nielsen bounded away from a point in A and a regular point in
A (Definition 3.1); Nielsen separated (Definition 3.2); and irreducible (Remarks 3.2 b)).
Recall (Remark 2.3 a)) that, contrary to what is suggested by the terminology, Nielsen

bounded implies strong Nielsen bounded.

3.1 Conditions for Nielsen boundedness

Two conditions are given which imply that a given periodic point collection is Nielsen
bounded away from A. The first defines what it means for a periodic point (p, f) to be
Nielsen bounded away from a specific point @ € A. Informally it says that not only is p not
Nielsen equivalent to a, but it is never Nielsen equivalent to a periodic point (g, ¢) with ¢
close to a. Proposition 3.1 b) states that being Nielsen bounded away from all compatible
periodic points in A implies that a periodic point is Nielsen bounded away from A.

The second condition is not on the periodic point p, but rather is a condition on a
point @ € A. Such a point is called regular if it is Nielsen equivalent to all nearby periodic

points of all nearby maps. The simplest example of a regular point is an isolated point of
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A. Proposition 3.1 a) states that if a periodic point is not Nielsen equivalent to a regular
point a € A, then it is Nielsen bounded away from it.

If f€ Aut(M, A), then let [f] denote itsrel A isotopy class.

Definition 3.1 A period n point (p, f) is said to be Nielsen bounded away from a € A,
if there exists a continuous positive function & : [f] — R™T such that (p, f) is not Nielsen
equivalent in FIX(n) to any periodic point (¢q,¢) with ¢ € [f] and ¢ € N(a,€(g)). A period
n point (a, f) with @ € A is called regular if there exists a continuous positive function
€ : [f] X Z — R* such that for all m € Z, (q,¢9) € FIX(mn) and d(q,a) < €(g, m) implies
that (¢, ¢) is Nielsen equivalent to (a, f) in FIX(mn).

Proposition 3.1

a) If (p, f) is a period n point which is not Nielsen equivalent to a regular point (a, f),

then it is Nielsen bounded away from it.

b) If every periodic point p, in the periodic point collection (p, f) is Nielsen bounded
away from every periodic point a € A whose period divides that of p,, then (p, f) is

Nielsen bounded away from A.

c) If every periodic point p, in an uncollapsible periodic point collection (p, f) is
Nielsen bounded away from every periodic point a € A which is strong Nielsen equiv-
alent to p, relative to the empty set, then (p, f) is strong Nielsen bounded away
from A.

Proof. For part a), first note that if (a, f) is not in FIX(n) then the result follows directly,
so assume (a, f) € FIX(n). It will be shown that (p, f) is Nielsen bounded away from a
with a function § = €(-,n). If this is not the case then (p, f) is Nielsen equivalent to some
(q,9) € FIX(n) with d(q,a) < €(g,n). By regularity, (¢, g) is Nielsen equivalent to (a, f)
in FIX(n). By transitivity, (p, f) is Nielsen equivalent to (a, f), a contradiction.

For part b), assume first that the periodic point collection consists of a single period n
point p which is Nielsen bounded away from every periodic point in A whose period divides
n, but is not Nielsen bounded away from A. Then there exists an approximating family
(fir f ~ g,ti,q") with ¢ — a € A. By continuity, a is a periodic point of g, and hence
of f, with period dividing n, and so (p, f) is Nielsen bounded away from it. However,
e(fi,) — €(g) > 0 and d(¢*,a) — 0, so (p, f) cannot be Nielsen equivalent to (¢*, f;,) for
large ¢, a contradiction. The generalization to periodic point collections with multiple

members is immediate.

The proof of part ¢) is similar to that of part b). Assume that the periodic point
collection consists of a single period n point p which is Nielsen bounded away from every

periodic point in A which is strong Nielsen equivalent to p relative to the empty set. If
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(p, f) is not strong Nielsen bounded away from A, then there is a strong approximating
family (fi: f ~ g,t;,¢') with ¢ — ¢ € A. Since (p, f) is uncollapsible, a is a period n
point of g, and hence of f: moreover (¢', fi.) ~ (a,g) ~ (a, f) relative to the empty set for
i sufficiently large by proposition 2.2. Hence (p, f) is Nielsen bounded away from (a, f),

and a contradiction follows as in part b). ]

Remarks 3.1

a) If A contains no periodic points, then it follows that any periodic point collection is

Nielsen bounded away from A.

b) If there exists B C A such that N(B,€) N A is f-invariant for arbitrarily small ¢,
then it may be possible to prove unremovabilityrel A\ N (B, ¢) as in Remark 2.4 b).

¢) By Proposition 3.1 ¢), if M is a surface and (p, f) is an uncollapsible periodic point
collection, then it is only necessary to check that each point in the collection is
Nielsen bounded away from all of the periodic points of A which have the same

braid type (see [6] for the definition of braid type and related information).

3.2 Criteria for uncollapsibility

In this section a criterion for uncollapsibility is given which is frequently useful in applica-
tions. It is assumed that the periodic point collection is strong Nielsen bounded away from
A, so that the argument focuses on behavior in the complement. The subsequent remarks

(Remarks 3.2) contain brief descriptions of two other methods of showing uncollapsibility.

Definition 3.2 Let (p, f) € PPC with p € A°. Then (p, f) is Nielsen separatedrel A
if any two distinct points of U, o(pa, f) which have the same period n lie in distinct

f™-Nielsen classesrel A.

Lemma 3.2 Let f € Aut(M, A), and py and py be fized points of f™ lying in A°. Then
there exists € > 0 such that if g € Aut(M, A) is e-isotopic to frel A, and qo and ¢ are
fized points of g" with d(p;, q;) < € for each i, then py and py are in the same f"-Nielsen

classrel A if and only if qo and ¢, are in the same g™-Nielsen classrel A.

Proof. Suppose first that py and p; lie in the same f™-Nielsen class, and let v be a path
in A from pg to p; with f*(vy) ~ vrel A. Since v and f"(v) are bounded away from A,
it follows that if € is sufficiently small then the path n from ¢o to g; obtained from + by
adjoining short paths from ¢o to pg and from p; to ¢ satisfies g"(n) ~ 7.

For the converse, suppose that pg and pq lie in distinct f"-Nielsen classes. Let Ny and

Np be disjoint coordinate neighborhoods of these two points, each disjoint from A. If € is
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small enough then there are paths A; in N; from p; to ¢;, whose images under ¢" also lie

in V;. Now suppose that g9 and ¢; lie in the same g™-Nielsen class, and let v be a path
from ¢o to q with ¢"(y) ~ 7. Write = Ao -7 - A" Since f"(y) is homotopic to ¢"(7)
by a homotopy in which the endpoints remain in No U Ny, it follows that f*(n) ~ n, a

contradiction. |

Lemma 3.3 Suppose that (p, f) is strong Nielsen bounded. If (p, f) is Nielsen separated,

P
then so is (q,¢g) whenever (p, f) ~ (q,9).

Proof. Let a and 3 be such that n, = ng = n, and ¢ and j be integers between 0 and
n — 1. Suppose that (a,4) # (3, 7). It is required to show that gi(q,) and g¢’(qs) lie in
distinct f”-Nielsen classesrel A.

Let (p,f) ~ (q,¢9) by a path p' and an isotopy fi:f ~ ¢. Let S be the set of all
t € [0,1] such that f{(p}) and ft] (pp) lie in distinct f{-Nielsen classesrel A. Then 0 € S,

and S is open and closed in [0, 1] by Lemma 3.2. |

Proposition 3.4 If (p, f) is strong Nielsen bounded and Nielsen separated, then it is

uncollapsible.

Proof. Suppose to the contrary that (p, f) is strong Nielsen bounded and Nielsen sep-
arated, but is not uncollapsible. Let (ft,ti,qi) be a strong approximating family from
(p,f) to(q,9), where q € P(g). Since (p, f) is strong Nielsen bounded, it follows that
q € A°.

Suppose first that there is some o with ¢, ¢ P, (g). Then for ¢ sufficiently large, there
are distinet points of the orbit of ¢/, which lie in the same f{:*-Nielsen class by Lemma 3.2
applied to ¢ (taking po = p1 = ¢»). This contradicts Lemma 3.3.

If this is not the case, then there exist distinct indices «w and [ such that the orbits of
¢o and gg coincide (and both have period n, = ng, since the first case does not occur).
Using Lemma 3.2 again, this implies that for ¢ sufficiently large there are points on the

orbits of ¢/, and qé which lie in the same f;'*-Nielsen class, contradicting Lemma 3.3. &

Remarks 3.2
a) Fixed points are trivially uncollapsible.

b) A periodic point collection (p, f) € PPC(n) consisting of a single period n point is
said to be irreducible if there is no proper divisor m of n such that there exists a path
v from p to f™(p) for which the loop v- f™(y)-...- f*~™(v) is homotopically trivial
(see for example [23]). If (p, f) has the property that the periods of all the points p,
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are distinct, then say that (p, f) is irreducible if each (p,, f) is irreducible. Suppose
all of the periods in (p, f) are distinct, and that (p, f) is strong Nielsen bounded.
Then it can be shown that if (p, f) is Nielsen separated, then it is irreducible; and
if it is irreducible, then it is uncollapsible. There does not seem to be a sensible
extension of the definition of irreducibility to the case in which the periods of the

points in the collection are not all distinct.

¢) A common situation in examples is that for each n > 1, all of the fixed points of
f™ are in different Nielsen classes. This implies that any periodic point collection
is Nielsen separated. Hence for such a map any periodic point collection which is

strong Nielsen bounded is uncollapsible.

d) It is often the case in two-dimensional applications that (p, f) can be shown to be
uncollapsible by using the mutual linking properties of the different periodic orbits in
the collection. Suppose, for example, that M = D?, that p; and p; are fixed points
of f which lie in different f-Nielsen classesrel A, and that ps is a period n orbit of f
which has rotation numbers my/n and my/n in the annuli D?\ {p;} and D?\ {p2},
with (mq,n) = (mg,n) = 1. Then if ((p1,p2,ps), f) is strong Nielsen bounded, it
is uncollapsible. For the continuations of p; and ps cannot collide, since they lie
in different Nielsen classes; the continuation of p3 cannot period-divide except onto
the continuation of py, since otherwise its rotation number about p; would have to
change discontinuously; and similarly the continuation of ps cannot period-divide
except onto the continuation of py. Similar arguments can sometimes be applied
inductively to a large collection of periodic points, using the linking of the orbit of
each p, about that of p,_; to rule out period-division of the continuation of p, (see

for example the proof of lemma 9.9 of [17]).

4 Examples and Applications

4.1 First Examples

The two examples in this section are intended to illustrate some of the definitions, and to
show simple applications of the main theorem and propositions. In the first, Theorem 2.4 is
used to show the unremovability of a pair of fixed points of a homeomorphism relative to an
invariant set which is minimal (i.e. every orbit in A is dense in A). In the second example,
A has a limit point which is fixed, and a fixed point in A° is seen to be unremovable
after showing that it is unremovable relative to an invariant subset of A, illustrating
Remark 3.1 b).

Both examples are homeomorphisms of the two-sphere S?, regarded as the Riemann
sphere CU {oc}. The origin and the point oo become the south and north pole, denoted
S and N respectively.
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For the first example, start with a homeomorphism ¢: 5! — S' which is a Denjoy
counterexample, so that ¢ has a minimal invariant Cantor set (see for example [10]).
Define G:C — C by G(z) = |z|exp(ig(arg(z))), and extend G to a homeomorphism of
S%. Let A be the minimal invariant Cantor set in the unit circle (the equator). It will
be shown that ((N,S),{) is unremovable relative to A. Observe first that it is strong
Nielsen bounded away from A, since A contains no periodic points (Remark 3.1 a)). Now
N and S lie in distinct G-Nielsen classes rel A. To see this, note that for any path
from N to S in A, the first gap of A through which it passes is a well-defined, homotopy
invariant notion. The action of G is such that this gap is different for f(v), and so v and
f(v) are never homotopic rel endpoints. Thus ((N,S),G) is Nielsen separated, and hence
uncollapsible by Proposition 3.4. Finally, each of the two fixed points has G-index 41,
and hence I((N,S),G) = 1 by the product property of the index. The periodic point
collection is therefore essential, and hence unremovable by Theorem 2.4. In particular,
any homeomorphism which is isotopic to Grel A has at least two fixed points.

For the second example, fix for each n > 1 a circle homeomorphism h,: S! — St such
that the rotation number p(h,) is non-zero, and that h,, has either a periodic orbit or a
Denjoy minimal set (equivalently, h,, does not have a fixed point or a dense orbit). Define
H on the circle |z| = 1/n by H(z) = exp(ih,(arg(z)))/n, and extend to a homeomorphism
H:C — C which has only two fixed points, NV and S. For each n > 1, let 4, be a periodic
orbit or Denjoy minimal set in the circle By a similar argument to that used in the first

example, it can be seen that N is is unremovable relative to A, for any n, and thus is

unremovablerel A =J, 4, U{S}.

4.2 Nielsen equivalence to points in A

This example illustrates the importance of the Nielsen boundedness hypothesis. A positive
index fixed point pin A€, which is alone in its Nielsen class and is not Nielsen equivalent to
any point in A is shown to be removable. By Theorem 2.4 it follows that p is not bounded
away from A: in fact, it is not Nielsen bounded away from any a € A.

Let B = [0,2] x S! be an annulus of width 2 with coordinates (s, #), and denote its
interior B® = (0,2) x S*. Define a: (0,2) — R by

_J log(s) if 0<s<1
a(s)_{—log@—s) if 1<s<2,

and ¢ : B® — B° by ¢(s,6) = (5,0 + a(s)). Thus ¢ twists the interval (0,2) x {0} around

the annulus infinitely many times.

Define a class of allowable homeomorphisms g : B — B

9(870) = (5‘|‘ﬁ(570)70+7(570))
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by imposing that 8 and v satisfy
B(s.0)

s

=0, 7(s,0) =0

as s — 0 uniformly in # and analogous conditions near the other boundary of B: the
conditions on  just say that ¢ is the identity on dB. Notice that, given any flow on B
which is fixed on 9B, the time parameterization may be adjusted so that the time one
map of the flow is an allowable homeomorphism.

For any allowable g, define

_J ¢pogoe™t ifzeB°
G(Z)_{ z it 2 € 9B.

Then the conditions on 3(s,8) and ~(s, ) imply that G is a homeomorphism of B. To
see this, simply write out the expression for G/(s, #) explicitly in the case s € (0,1), and
observe that G(s,0) — G(0,6) as s — 0 and G(s,0) — G(2,0) as s — 2 for each fixed 6.

Hence G is a continuous bijection, and therefore a homeomorphism.

/\/\ e

Figure 1: Flows on the annulus with time one maps go (left) and ¢y (right)

Now let g, and vy, be flows with trajectories as shown in Figure 1 a) and b) re-
spectively. Adjust the time parameterization so that their time one maps, gg and ¢q, are
allowable homeomorphisms, and so that gy and ¢, agree on I = [0,2] x {0}. By continu-
ously deforming the first flow into the second, an isotopy ¢;: go ~ g1 relative to TUJB can
be constructed in such a way that each g; is also allowable. The isotopy Gy = ¢ 0 gs0 ¢~ 1
on B° can thus be extended to the identity on 9B, and this extended isotopy is relative
to ¢(I°) U OB. Let A = ¢(X)UIB, where X = o(z,g9) = o(z, g1) is the orbit of some
point x in the interior of I.

Let p be the unique fixed point of Gy in A°, which is alone in its Go-Nielsen class
relative to A and has index +1. It must be removablerel A as (G has no fixed point in A°.
Further, it is easy to check that (p,Gy) is not Nielsen equivalent to any @ € A. Informally
speaking, p has been removed by an isotopy which pushes it onto all of A despite the fact

that it is not Nielsen equivalent to any point in A.
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4.3 An infinite orbit with an unremovable horseshoe

This example is due to Michael Handel (personal communication and [20]), and illustrates
what he calls a ‘homotopy horseshoe’. It may be viewed as arising from a Nielsen-Thurston
type theory for mapping classes with ‘translation ends’ on noncompact surfaces [21] (cf.
[12]). The example consists of a homeomorphism ¥: D? — D? of the two-disk. The
compact invariant set A is the closure of a single orbit traveling from one point on dD? to
another. The nonwandering set A of ¥ in the interior of D? is a Smale horseshoe, and is
therefore a Cantor set on which the dynamics is conjugate to the full shift on two symbols:

it will be shown that all of the periodic points in A are unremovable relative to A.

Write D? = [0,1] x [—1,1], and define T: D? — D? by T(x,y) = (/7,y). Set zg =
(1/2,0), and write z; = T(x) for each integer i, so that X = {z;: ¢ € Z} is the orbit of
zg under 1. Let A be the closure of X, so that A = X U{a} U{w}, where a = (0,0) and
w=(1,0).

Therel A isotopy class of ¥ will be that of D o T, where D is a clockwise Dehn twist
about a simple closed curve which is contained in (1/4,1/v/2) x [~1,1], and bounds a
disk containing zg and x;. The construction of an explicit map W in this isotopy class
generalizes that of [13] from the case of a periodic orbit to that of an infinite discrete orbit.
For each i € Z, let R; = [a;,b;] X [=1/2,1/2] be a ‘thin’ rectangle which contains z; but
no other points of X, and let B; = [b;, a;+1] X [-1/2,1/2] be a rectangle which joins R; to
R;41. Then construct ¥ in the isotopy class of Do T in such a way that (see figure 2)

a) V(R;) C Rit1, and ¥ acts as a strict contraction on R; for each 7.

b) W(B;) N B; is only non-empty when this is required by the isotopy class: that is
U(B;) intersects only B;iq, except in the cases i = —2 and ¢ = 0, where U(B;) also

intersects By.

c) When ¥(B;) N B; # 0, then horizontal and vertical lines in B; N W~!(B;) are sent
to horizontal and vertical lines in Bj;, with a uniform expansion and contraction

respectively.

d) W agrees with T on dD?: all of the interior periodic points of ¥ lie in the rectangles
B; (in fact they all lie in By).

Notice that the image of By crosses over By as in a Smale horseshoe. Let A be the
resulting compact invariant set (i.e. the set of points whose entire orbit lies in By). Every
periodic point in A has index 1. Moreover, it can be shown (see the next paragraph),
first, that all of these periodic points are Nielsen bounded away from « and w (with the
exception of the fixed point labeled ¢ in figure 2, which is strong Nielsen equivalent to all

of the fixed points on §D?); and second, that for each n, all of the fixed points of ¥” in A

19



Figure 2: Construction of the homeomorphism ¥

lie in distinct W™-Nielsen classestel A. Since the fundamental group of D?\ A is free, and
hence has trivial center, this second fact also implies that each of the periodic points in
A is alone in its strong Nielsen class (Remark 2.1 f)). Hence any periodic point collection
(p,¥) for which each p, is an interior periodic point distinct from ¢ is strong Nielsen
bounded, uncollapsible (by Proposition 3.4), and essential, and hence is unremovable by
Theorem 2.4. In particular, any homeomorphism in this isotopy class has a periodic orbit
of each braid type which is present in Smale’s horseshoe.

There are at least two ways to prove the two assertions in the previous paragraph. The
first is to use the action of W on 7y (D?\ A) in conjunction with the symbolic description of
A to compute twisted conjugacy classes directly. Different periodic points in A will have
nonequivalent classes implying that the periodic points are in different Nielsen classes.
Further, none of these classes contain a representative containing just the generators near
« or those near w. This implies that the periodic points cannot be Nielsen equivalent to a
periodic point near « or w, i.e. the periodic points are bounded away from « and w. The
second method of proof [22] is to adapt the Bestvina-Handel algorithm [3] to the case of
such an infinite orbit X to construct a pseudo-Anosov-like representative ® of the isotopy
class which is essentially the same as W (see [21, 12]), and then to imitate the usual proof

for pseudo-Anosov maps by lifting the invariant laminations to the universal cover [19].

4.4 Unremovability relative to a generalized adding machine

In this section, a homeomorphism ®: D? — D? is defined which has a minimal invariant
Cantor set A, relative to which all of the periodic points of & are unremovable. The
restriction of ® to A is conjugate to a generalized adding machine, but (even when a
particular conjugacy class of adding machine has been chosen) there are infinitely many
choices during the construction which influence the isotopy class of ® relative to A. From
the point of view of Nielsen-Thurston theory, ® may be thought of as the analogue of a
Nielsen-Thurston canonical representative of a reducible isotopy class which has infinitely
many components. For the sake of brevity, it will be assumed that the reader is familiar

with Nielsen-Thurston theory: more information can be found in [11, 6].
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The restriction ®: A — A falls into the class of minimal dynamical systems which are
termed generalized adding machines (the terms odometer and dial are also used). The
suspension flows of these systems are called generalized solenoids. Generalized adding
machines have a long history in dynamics. They arise naturally in area preserving maps
of the plane, where one finds infinite nested families of elliptic periodic orbits, each one
rotating about the one before it in the family. The adding machine arises as a limit of these
orbits (see [4] Section 7). The suspension of this situation arises generically in Hamiltonian
flows [27]. Generalized adding machines as minimal dynamical systems have also been
studied extensively in the topological dynamics literature. Buescu and Stewart [8] show
that whenever A is a compact Lyapunov stable transitive invariant set for a discrete
dynamical system f: X — X, where X is locally compact and locally connected, the
dynamics of f on the components of A is topologically conjugate to a generalized adding

machine.
The construction of a disk homeomorphism detailed here is a generalization of the

situation on which Birkhoff commented, and is quite familiar from examples of Kupka-
Smale diffeomorphisms with no sources or sinks [5, 14, 30] and related constructions [15].
The first step is to define a family of nested disks in D? on which the action of ® will
subsequently be defined. The nested disks will be indexed symbolically in the following
way. Let ng = 1, and fix a list (ni)iZI of integers with n; > 1 for each ¢. For each k£ > 0,
define S, C Z* by Sy = {(s1,82,...,51): 1 < s < m;}, and extend this definition to the
case k = oo in the obvious way. An allowable sequence s is defined to be an element of S
for some k € NU{oc}. For 1 < k < oo, the projection p: Sy — Sk_; is defined by dropping
the last element of the sequence, so p(s1,...,5k) = (S1,...,Sk—1).

For each k € NU{oo}, the addition map ay: Sy — Sk adds one to s; and carries to the

right: that is, ax((s1,...,sk)) = (t1,...,tk), where

b si+1 ifs;=n;forall j <i
] s otherwise.

Equipping Si with the product topology, each «y is a minimal homeomorphism of Sy (for
k # oo, there is only one orbit of ay). In the case k = oo, the dynamical system (Soo, @)
is called the generalized adding machine described by the list (n;). Distinct lists can give
rise to conjugate adding machines [8, 9].

It will be convenient in what follows to say that n (circular) subdisks Dy,..., D, of
a (circular) disk D are placed regularly in D if they are mutually disjoint, all have the
same radius, and have centers equidistant from the center of D and at angles 27j/n. (In
particular, this means that their radii are less than half that of D). Let D = D? be the
unit disk, and place n; disks, labeled D, for s € Sy, regularly in D. In each of these
ny disks Dy, place regularly ng disks labeled Dy, where t € Sy and p(t) = s. Proceed
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inductively: at the ith stage of the construction, for each s € 5;_1, place regularly in Dy
n; disks labeled Dy, where t € S; and p(t) = s. Since the diameters of the disks tend to

zero as © — 00, it follows that

A= U Ds

kzl SESk

is a Cantor set, and there is a natural homeomorphism h: A — S, given by h(z) =
(s1,82,...), where w € D,y for each k.
For each finite allowable sequence s € S, let s be an annular collar of the boundary

of D,, chosen in such a way that all of these collars are mutually disjoint. Let D, be the

closure of the disk D minus the disks and collars inside it,

Dy =d(D,\ |J (D:uCy)).

tp(t)=s
Then define the k" level of the disk collection to be

Ly=|J Ds.
SESE

Figure 3 shows two stages of the construction with n; = 3 and ny = 2.

Figure 3: Initial stages of the construction of & with n; =3 and ng =2

Now define the homeomorphism ®: D? — D? by defining it on each level L and on each

of the collars. For each k, the restriction ®: Ly — Ly is required to satisfy @(f)s) = ﬁak(s)

for each s € Sj,. Thus the collection of D, with s € Sj are cyclically permuted by ® with
period my = [[;<;<r 7. Hence ®™F is a homeomorphism of each D, which is required to

be either pseudo-Anosov, or an adapted finite order map, with the latter being defined as

follows.
If B is a disk with m regularly placed holes, then an adapted finite order map of B

is a rigid rotation of angle 27j/m for some j, followed by the time one map of the flow
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depicted in figure 4 for the case m = 3. Note that 7 must be chosen coprime to m, in
order that the holes are cyclically permuted by the map. By making the time one map of
the flow an irrational rotation on all of the boundary components of B, it can be arranged

that the only periodic point is the fixed point at the center of B.

Figure 4: The flow used in the construction of an adapted finite order map

Now extend @ over the collars Cs in such a way that there are no periodic points in
the interiors of the collars (so for s € Si, ®™* could push all orbits from one boundary of
C's to the other). No other constraint is placed on the behavior of ® on the collars: up to
isotopy, this is defined by the number of Dehn twists along their core circles.

Because the diameters of the disks tend to zero, there is a unique extension of ® over
A which makes it a homeomorphism of D?, and the restriction ®: A — A is conjugate via
h: A — S, to the generalized adding machine a.,: S, — S.. Notice that the isotopy
class of ® relative to A is determined by the precise choice of adapted finite order or
pseudo-Anosov maps on each level, and by the number of Dehn twists in the collars. In
particular, there are uncountably many such choices for each conjugacy class of generalized
adding machine.

The map ® has one periodic orbit on each finite order level, and infinitely many periodic
orbits on each pseudo-Anosov level. It will be shown that each of these periodic orbits is
unremovable relative to A. Notice first that A contains no periodic points, and hence all
of the periodic points are Nielsen bounded away from A (Remark 3.1 a)). Next, by an
easy extension of the usual Nielsen-Thurston case (see [7] Section 1), no periodic point in
the interior of a level Ly is in the same Nielsen class rel A as any other periodic point,
under any iterate of ®. By construction, these periodic points all have non-zero index.

Periodic points on the boundary of a level Ly cause slightly more difficulty. They may
lie in the same Nielsen class as other points of the same orbit (on the same boundary
component), and may not therefore be Nielsen separated: they are, however, irreducible
(Remark 3.2 b): see [7] where irreducible is called “uncollapsible”). They may also lie in

the same Nielsen class as periodic points on the other boundary of the collar Cs to which
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they belong. It is argued in [7] that in this case also, the total strong Nielsen class has

non-zero index.

Thus if p is any periodic point of @, the periodic point collection (p, @) is strong Nielsen
bounded, irreducible (and hence uncollapsible), and essential. It follows by Theorem 2.4
that (p,®) is unremovable. Thus any homeomorphism which is isotopic to ®rel A has a
periodic orbit of each braid type which is exhibited by ®. By analogy with the Nielsen-
Thurston theory, it would be possible to start with a description of therel A isotopy class
(say by its action on a nested family of circles), and then construct ® as the dynamically
minimal representative of the class. This point of view connects with the results of Bell
and Meyer [2], who show that stable generalized adding machines embedded in plane
homeomorphisms are always the limit of periodic points. In the class of examples presented
here, all of these periodic points are unremovable relative to the minimal set. The precise

nature of the periodic points depends on the isotopy class relative to A.
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