
Isotopy stable dynamis relative to ompat invariant setsPhilip BoylandDepartment of MathematisUniversity of FloridaPO Box 118105Gainesville, FL 32611-8105boyland�math.u.edu Toby HallDepartment of Mathematial SienesUniversity of LiverpoolLiverpool L69 3BXUnited Kingdomtobyhall�liv.a.ukJanuary 27, 2001AbstratLet f be an orientation-preserving homeomorphism of a ompat orientable mani-fold. SuÆient onditions are given for the persistene of a olletion of periodi pointsunder isotopy of f relative to a ompat invariant set A. Two main appliations aredesribed. In the �rst, A is the losure of a single disrete orbit of f , and f has aSmale horseshoe, all of whose periodi orbits persist; in the seond, A is a minimalinvariant Cantor set obtained as the limit of a sequene of nested periodi orbits, allof whih are shown to persist under isotopy relative to A.AMS Classi�ation sheme numbers: 58F20, 58F151 IntrodutionDynamial properties whih are exhibited by every homeomorphism in an isotopy lass aresaid to be isotopy stable. The identi�ation of isotopy stable features makes it possibleto obtain a great deal of information about the dynamis of a map given only limitedalgebrai or ombinatorial data onerning its isotopy lass. The simplest example of thisis provided by the Lefshetz �xed point theorem whose onlusion, from this point ofview, is the existene of an isotopy stable �xed point. Nielsen �xed point theory yieldsa re�nement of the Lefshetz theorem, by means of whih it may be possible to provethe isotopy stability of a olletion of several �xed points. Somewhat surprisingly, theappliation of this theory to periodi points is omparatively reent, with the work ofHalpern [18℄, Jiang [23℄ and others. The proeedings [28℄ give a good piture of theurrent state of the theory.Unremovability is the strongest sense in whih a periodi point an be isotopy stable.It arises from the bifuration-theoreti notion of following a periodi point through aontinuously varying family of homeomorphisms: if ft is suh a family (i.e. an isotopy),and t 7! pt is a path in M with the property that pt is a periodi point of ft with period n1



for all t, then the pairs (p0 ; f0) and (p1 ; f1) are said to be strong Nielsen equivalent. Thepair (p ; f) is said to be unremovable if every g isotopi to f has a periodi point q suhthat (p ; f) and (q ; g) are strong Nielsen equivalent. In other words, any g isotopi to fhas a periodi point q whih shares with p any dynamial property whih is preserved asit is followed ontinuously through a family of homeomorphisms.Using bifuration-theoreti tehniques, suÆient onditions for the unremovability ofa periodi point of a C1-di�eomorphism were given by Asimov and Franks [1℄. Their workwas subsequently generalized, using more traditional Nielsen-theoreti methods, to ol-letions of periodi points of homeomorphisms under isotopy relative to a �nite invariantset [16℄. By means of the Nielsen-Thurston lassi�ation theorem, neessary and suÆ-ient onditions have been given for the unremovability of �xed points [24℄ and periodipoints [7℄ of surfae homeomorphisms. In this paper, suÆient onditions are given forthe unremovability of olletions of periodi points under isotopy relative to a generalompat invariant set. The main appliation antiipated for these results is to surfaehomeomorphisms, but the results are valid for manifolds of any dimension greater thanone.Nielsen theory relative to an invariant set A has been onsidered by several authors,and is used to �nd lower bounds on the number of periodi orbits in the whole spae, theinvariant set, and the omplement of the invariant set. [31℄ is a good survey artile for theinterested reader. In ontrast to the approah of suh papers, there is no requirement herethat A be an Absolute Neighborhood Retrat. In fat, A is a Cantor set in many of themore substantial appliations. This level of generality is ahieved by �nding onditionswhih imply that Nielsen lasses remain bounded away from A.The bifuration-theoreti approah provides a useful heuristi for understanding theonditions for unremovability whih are presented here. Given a periodi point p of ahomeomorphism f , one an ask how the periodi point might disappear as it is followedthrough a family of homeomorphisms. There are three obvious senarios under whih thisan our. In the �rst, the ontinuation of p ollides with the ontinuation of a periodipoint on a di�erent orbit, and the two annihilate eah other (saddle-node bifuration). Forthis to happen two onditions must be satis�ed. First, the two periodi points must beable to ollide and so they must lie in the same strong Nielsen equivalene lass (that is,the topologial manner in whih they are embedded in M nA must be the same). Seond,in order that they an annihilate eah other, the sum of their periodi point indies mustbe zero. Thus this senario an be ruled out by requiring that the set of all periodipoints of f whih are strong Nielsen equivalent to p has non-zero index. This ondition isexpressed by saying that p has an essential strong Nielsen lass.The seond senario is that the ontinuation of p ollides with the ontinuation ofanother point on the same orbit (period-dividing bifuration). This is ruled out by theunollapsibility hypothesis, a preise topologial statement that the periodi point never2



period divides. This high-level ondition is used in the statement of the theorem beausethere are a number of di�erent hypotheses, often veri�able in pratie, whih imply un-ollapsibility. Some of these are desribed in Setion 3. Notie that a �xed point annotperiod divide, and hene this ondition only omes into play when onsidering periodipoints of period greater than one.The �nal senario is that the ontinuation of p runs into A. If A is topologially simple,then p will run into a periodi point in A whih is strong Nielsen equivalent to p, and insuh ases p should be onsidered to be unremovable. In ases where the topology of A andthe dynamis of f restrited to A are suÆiently ompliated, there are other possibilitiesto onsider: the ontinuation of p ould limit to a non-trivial ontinuum in A, or to aperiodi point to whih it is not strong Nielsen equivalent. Disallowing these possibilitiesrequires a new Nielsen-theoreti ingredient, strong Nielsen boundedness. Conditions whihimply strong Nielsen boundedness are given in Setion 3.The main theorem (proved in Setion 2.3) is:Theorem 2.4 For an orientation preserving homeomorphism of a ompat smooth ori-entable manifold M with ompat invariant set A, a periodi point olletion whih isunollapsible, strong Nielsen bounded, and essential rel A is unremovable rel A.Notie that the theorem is stated for (�nite) olletions of periodi points, rather thansingle periodi points as in the above disussion. There are two reasons for working withperiodi point olletions. First, the persistene of a olletion means more than thatthe individual orbits persist: it also implies the persistene of the topologial relationshipbetween those orbits. This is often useful in appliations. Seond, proving the unremov-ability of a olletion of periodi points is sometimes easier than proving their individualunremovability, sine the topologial relationship between the orbits an present additionalobstrutions to removability (see Remark 3.2 d)).As noted above, the main ontributions of this paper are tehniques for doing Nielsentheory relative to topologially ompliated invariant sets A. The prinipal new featurein this ase is the third senario disussed above. In �nding onditions that disallow thissenario it does not suÆe to require that the given periodi point is not Nielsen equivalentto any points in A (see the example in Setion 4.2). Rather, one must restrit attentionto the Nielsen bounded lasses, i.e. the lasses that are inside the omplement of A forany isotopi map. In �nding onditions that imply Nielsen boundedness it is neessarythat the dynamis on A be known: one annot hope to do Nielsen theory on nonompatspaes without information about the ation on the \ends". The ation on the ends islear when the problem is stated in terms of isotopies relative to a ompat invariant set.Working relative to an invariant set has the added advantage of making the the �xed pointindex straightforward; the index of a �xed point rel A is just the index in M . However,this point of view has its own ompliations. Contrary to the situation in the absene of aseleted invariant set, if A ontains aumulation points then two rel A homeomorphismsan be arbitrarily lose (as homeomorphisms of M) and still not be isotopi rel A.3



Working in the nonompat spae A does have one very onvenient feature. If twoperiodi points are said to be Nielsen equivalent rel A if they are Nielsen equivalent in A,then most of the standard aspets of Nielsen theory (exluding the index) go through withlittle hange. A familiarity with this standard Nielsen theory will be assumed: [23℄ is anexellent referene.Setion 2 onsists of de�nitions, basi lemmas and the proof of the main theorem,whih is based on the approah of [16℄. Conditions whih imply Nielsen boundedness andunollapsibility are then desribed in Setion 3. Finally, a number of examples and appli-ations of the main theorem are presented in Setion 4. Those of Setions 4.1 and 4.2 arerelatively simple, and are intended to illustrate some of the de�nitions and the appliationof the main theorem; more substantial appliations are given in Setions 4.3 and 4.4.2 The Unremovability theorem2.1 De�nitionsLetM be a ompat smooth orientable manifold with metri d, and A be a ompat subsetof M . The omplement of A in M is denoted A = M n A. Let Aut(M;A) denote thespae of orientation preserving homeomorphisms f : (M;A) ! (M;A) equipped with theuniform metri � indued by d. For eah integer n � 1, let Pn(f) be the set of (least)period n points of f : thus Pn(f) is an open subset of Fix(fn). The orbit of a point p 2Munder f is written o(p; f) = ff i(p) : i 2Zg.In this paper, olletions of k � 1 distint periodi points will be onsidered: theirperiods will be enoded in a vetor n = (n1; : : : ; nk). The reader may �nd it helpful toonentrate initially on the ase k = 1. Write Fn(f):Mk !Mk for the map fn1�� � ��fnk ,and de�ne Pn(f) � Mk for the set of points p = (p1; : : : ; pk) suh that p� 2 Pn�(f) foreah � � k, and the points p� all lie on di�erent orbits of f : learly Pn(f) is an opensubset of Fix(Fn(f)). In pratie, whenever k and n are either arbitrary or �xed withoutambiguity, the subsripts will be dropped and the symbols F(f) and P (f) used. Moreover,the symbols � and � will always be taken to range over f1; : : : ; kg, and expressions suhas `for some �' or `for all �' should be interpreted aordingly. The produt metri onMkwill also be denoted d. Finally, in an abuse of notation, p 2 A will be taken to mean thatp� 62 A for all �, and p 62 A to mean the onverse, that p� 2 A for some �.If f 2 Aut(M;A) and p 2 P (f), then the pair (p ; f) 2 Mk � Aut(M;A) is referredto as a periodi point olletion: the set of all periodi point olletions with periods n isdenoted PPC(n) (or just PPC):PPC = f(p ; f) 2Mk � Aut(M;A) : p 2 P (f)g:4



Similarly FIX(n) (or just FIX) is de�ned as:FIX = f(p ; f) 2Mk � Aut(M;A) : p 2 Fix(F(f))g;and thus PPC is an open subset of FIX.Isotopies (respetively homotopies) will be written in the form ft: f ' g. This meansthat there are homeomorphisms (respetively maps) ft:M ! M for eah t 2 [0; 1℄, suhthat the mapM�I !M given by (p; t) 7! ft(p) is an isotopy (respetively homotopy) fromf to g. Isotopies and homotopies will usually be taken relative to A: in this ase, all themaps ft are required to agree pointwise on A. Isotopies and homotopies of ars and pathsrelative to A are de�ned similarly: suh an ar or path is allowed to pass through A, butintersetions with A must remain �xed throughout the isotopy or homotopy. To be morepreise, if �: [0; 1℄! M is a path, and �(t�) 2 A for some t� 2 [0; 1℄, then �(t�) = �(t�)for any path � whih is homotopi to � rel A. A homotopy fFtg:F(f) ' F(g) is said tobe relative to A if�i(Ft(x1; : : : ; xi�1; a; xi+1; : : : ; xk)) = fni(a) = gni(a)for a 2 A and all 1 � i � k where �i :Mk !M is the projetion onto the ith omponent.Homotopy of paths in Mk relative to A is de�ned similarly.Two �xed points p; q 2 A of an iterate fn of f are said to lie in the same fn-Nielsenlass rel A if they lie in the same Nielsen lass for the restrition of fn to A in the usualsense:De�nition 2.1 Suppose that p; q 2 Fix(fn) \ A for some integer n � 1. Then p and qlie in the same fn-Nielsen lass rel A if there is a path � in A from p to q suh that �and fn Æ � are homotopi relative to endpoints in A.By ontrast, the de�nitions of two periodi point olletions being Nielsen equivalentor strong Nielsen equivalent rel A involve working rel A rather than in A. In partiular,this means that the de�nitions are valid even if some of the points in the olletion lie inA.De�nitions 2.2 Two elements (p ; f) and (q ; g) of FIX are Nielsen equivalent rel A ifthere exists a path � in Mk from p to q, and a homotopy Ft:F(f) ' F(g) relative to Asuh that the path t 7! Ft(�(t)) is homotopi (with �xed endpoints) to � rel A.Two elements (p ; f) and (q ; g) of PPC are Strong Nielsen equivalent rel A, written(p ; f) � (q ; g), if there exists a path  in Mk from p to q, and a rel A isotopy ft: f ' gwith (t) 2 P (ft) for all t. It will be said that (p ; f) � (q ; g) by the path  and theisotopy ft. The Strong Nielsen Class of an element (p ; f) 2 PPC is de�ned to besn(p ; f) = fq 2 P (f) : (q ; f) � (p ; f)g:5



Remarks 2.1a) Notie that in De�nition 2.2 there is no requirement that the periodi points or thepaths lie in A.b) The r̀el A' will be dropped where there is no danger of onfusion.) It is lear that Nielsen equivalene and Strong Nielsen equivalene are equivalenerelations on FIX and PPC respetively. The relation of Nielsen equivalene orre-sponds to what is normally termed orrespondene of Nielsen lasses under a homo-topy (see [23℄). The equivalene lasses under strong Nielsen equivalene are justthe path omponents of PPC.d) It an easily be seen that Strong Nielsen equivalene implies Nielsen equivalene:simply hoose � =  and Ft = F(ft).e) If f is a �xed homeomorphism, then it would seem natural to refer to the set S ofall q in P (f) for whih (q ; f) is Nielsen equivalent to (p ; f) as the Nielsen lass of(p ; f). This is not orret beause it is not the F(f)-Nielsen lass of p in the usualsense. This remains the ase even when eah q 2 S an be shown to be Nielsenequivalent to (p ; f) using a path � in A: what S is in this ase is the union of allF(f)-Nielsen lasses whih orrespond to that of p under a homotopy. The set Sis the usual Nielsen lass if every self-homotopy of F(f) lifts to a self-homotopy inthe universal over of (M nA)k: that is, if the Jiang subgroup of F(f) is trivial [23℄.This is always the ase if the enter of the fundamental group of (M nA)k is trivial.If (p ; f) � (q ; g), then not only do orresponding periodi points from the two olle-tions have equal periods, but also the way in whih they are embedded in the dynamis ofthe homeomorphisms relative to A and to eah other are preserved. For example, in thesurfae ase, the two olletions have the same braid types and the same mutual linkingnumbers [16℄. It is for this reason that strong Nielsen equivalene is a good relation to usein the de�nition of unremovability.De�nition 2.3 A periodi point olletion (p ; f) 2 PPC is unremovable if for all g 2Aut(M;A) isotopi to f (rel A), there is some q 2 P (g) suh that (p ; f) � (q ; g).Remarks 2.2a) Notie that the de�nition of P (f) requires that eah p� lies on a di�erent orbit. Thus,for example, if (p ; f) onsists of two periodi points p1 and p2 with (p1 ; f) � (p2 ; f),then it is possible that (p ; f) is not unremovable even though (p1 ; f) and (p2 ; f)are. 6



b) If (p ; f) is unremovable, then so is eah (q ; g) with (q ; g)� (p ; f).De�nitions 2.4 Let (p ; f) 2 PPC and (q ; g) 2 FIX. A strong approximating familyfrom (p ; f) to (q ; g) is a triple (ft; ti;qi), where ft: f ' g is an isotopy relative to A;ti ! 1 is a sequene in [0; 1℄; and qi ! q is a sequene in Mk with qi 2 P (fti) and(p ; f) � (qi ; fti) for all i. An approximating family from (p ; f) to (q ; g) is a similartriple in whih ft need only be a homotopy, qi need only lie in Fix(F(fti)), and eah(qi ; fti) need only be Nielsen equivalent to (p ; f).The periodi point olletion (p ; f) is said to be unollapsible (relative to A) if when-ever (q ; g) 2 FIX and there is a strong approximating family from (p ; f) to (q ; g), then(q ; g) 2 PPC. It is said to be strong Nielsen bounded away from A (respetively Nielsenbounded away from A) if whenever (q ; g) 2 FIX and there is a strong approximatingfamily (respetively an approximating family) from (p ; f) to (q ; g), then q 2 A.Remarks 2.3a) Sine the onditions for an approximating family are weaker than those for a strongapproximating family, it follows that Nielsen boundedness implies strong Nielsenboundedness.b) Conditions whih imply unollapsibility, Nielsen boundedness and strong Nielsenboundedness are given in setion 3.) If (p ; f) is unollapsible or strong Nielsen bounded, then so is any periodi pointolletion (q ; g) whih is strong Nielsen equivalent to (p ; f).Reall (see for example [23℄) that, generalizing the notion of the index of an isolated�xed point, there is an index funtion whih assigns an integer index(M;U; f) to eahtriple (M;U; f) onsisting of a ompat manifold M , an open subset U �M , and a mapf :M !M with Fix(f)\�U = ;. The index is de�ned axiomatially, the properties whihare relevant here being the following:Normalization index(M;M; f) = L(f), the Lefshetz number of f .Existene If index(M;U; f) 6= 0, then Fix(f) \ U 6= ;.Homotopy If ft: f0 ' f1 is a homotopy suh that Fix(ft) \ �U = ; for all t, thenindex(M;U; f0) = index(M;U; f1):Exision If V is an open subset of U suh that Fix(f) \ U = Fix(f)\ V , thenindex(M;U; f) = index(M;V; f):7



Produt index(M �N;U � V; f � g) = index(M;U; f) � index(N; V; g).If F is an open subset of Fix(f) whih is ompat (for example an isolated �xed point),then its index an be de�ned by index(F; f) = index(U; f), where U is an open subset ofX with U \ Fix(f) = F . This de�nition is independent of the hoie of U by the exisionproperty.De�nitions 2.5 If sn(p ; f) is open and losed in Fix(F(f)), then the index of (p ; f) isI(p ; f) = index(sn(p ; f);F(f)). If I(p ; f) exists and is non-zero, then (p ; f) is said tobe essential.As a onsequene of Proposition 2.3 below, the index always exists when (p ; f) isunollapsible and strong Nielsen bounded. The unremovability theorem (Theorem 2.4)states that if (p ; f) is unollapsible, strong Nielsen bounded, and essential, then it isunremovable.2.2 Preliminaries to the unremovability theoremIn this setion some preliminary propositions will be stated and proved. The followingnotation is adopted: given � > 0 and a subset S ofM , the open and losed �-neighborhoodsof S are denoted N(S; �) and N(S; �) respetively. An isotopy ft is said to be an �-isotopyif �(fs; ft) < � for all s and t: if suh an �-isotopy exists, then f0 and f1 are said tobe �-isotopi. Closed disks, irles and annuli entered at the origin in Rn are denotedD(�) = fz 2 Rn : jzj � �g, S� = fz 2 Rn : jzj = �g, and A(a; b) = fz 2 Rn : a � jzj � bg.If f is a map de�ned in a neighborhood of S�, then f� denotes its restrition to S�.The following topologial lemma will be used in proving Proposition 2.2. Its proofuses a deep topologial result, the annulus onjeture (now a theorem, see the ommentsin [25℄ inserted in the version reprinted in the appendix of [26℄ as well as [29℄). We havea more elementary proof of Proposition 2.2 whih is not based on the annulus onjeture,but it is muh longer.Lemma 2.1 Let f : D(1) ! Rn be an orientation preserving topologial embedding withf(0) = 0, and let � 2 (0; 1). Then there exist � 2 (0; �) and bf : D(1) ! Rn with bf ' frel f0g by an isotopy supported on �N(0; �), and bf = id on N(0; �).Proof. Pik � > 0 small enough that D(�) is ontained in f(N(0; �)). Now f� is ertainlya loally at embedding sine it is the restrition of a embedding of D(1), so the annulusonjeture yields a homeomorphism h : Â! A(�; �), where Â is the losed region boundedby S� and f(S�).The onstrution of bf uses a homeomorphism F : A(�; �)! A(�; �) whih sends eahirle S� to itself. Sine hf� is an orientation preserving homeomorphism of S� there is an8



Alexander isotopy Ht : hf� ' id. Pik � < (� � �)=2 and for eah � � � � � � �, de�neF� = H�(�) with � : [���; �℄! [0; 1℄ an orientation reversing homeomorphism. Similarly,using an isotopy of h� to the identity, F� an be de�ned for � � � � �+ � so that F� = h�and F�+� is the identity. Finally, for �+ � � � � � � �, let F� = id.The required bf is de�ned by letting it equal f on A(�; 1), h�1F on A(�; �) and theidentity on D(�). Sine ( bf�1f)� = id and bf�1f(0) = 0 the Alexander trik yields bf�1f 'idrel f0g and so f ' bfrel f0g.Note that if Hn is the upper half spae fx 2 Rn : xn � 0g then the analog of theproposition for embeddings f : D(1)\Hn ! Hn also holds.Two main propositions are prerequisites for the proof of the unremovability theorem.The �rst is a loal result, saying that if (p ; f) is a periodi point olletion with p 2 A,then all nearby periodi point olletions are strong Nielsen equivalent to (p ; f).Proposition 2.2 Suppose that (p ; f) 2 PPC with p 2 A. Then there exists � > 0 suhthat whenever g is �-isotopi to f rel A, and q 2 P (g) is �-lose to p, then (p ; f) � (q ; g).In partiular, if (p ; f) is unollapsible and strong Nielsen bounded, and there exists astrong approximating family from (p ; f) to (q ; g), then (p ; f) � (q ; g).Proof. Assume �rst that the periodi point olletions (p ; f) and (q ; g) onsist of single�xed points p and q and that p is in the interior of M . Pik Æ > 0 so that N(p; Æ) isbounded away from A and is a oordinate hart in the manifold M . Now pik � < Æ=5so that f(N(p; �)) � N(p; Æ). Using Lemma 2.1 loally, obtain the orresponding � anda loal homeomorphism bf that agrees with f outside N(p; �). De�ning bf to be f outsideN(p; �) yields a homeomorphism bf ' f rel (fpg [ A) by an isotopy supported on N(p; �)and bf = id on N(p; �).Thus (p; f) � (p; bf) by the onstant path and an isotopy supported on N(p; �). Ifft : f ' g is an �-isotopy and (q; g) is a �xed point with d(q; p) < �, then (q; bf) � (p; bf)by any path ontained in N(0; �) and the onstant isotopy. It remains to show that(q; bf ) � (q; g).If f 0t denotes the isotopy from bf to f followed by that from f to g, then f 0t : bf ' gis a (� + �)-isotopy. Thus, in partiular, the path t 7! f 0t(q) is ontained in N(q; 2�).Pik loal oordinates (and a vetor spae struture) adapted to the metri for N(q; 4�)�N(p; 5�)� N(p; Æ) with origin q = 0. For z near q de�ner(z) = ( 1� jzj=2� if jzj � 2�0 otherwise,9



and let kt(z) = z � r(z � f 0t(q))f 0t(q), where the subtration and multipliation use theloal vetor spae struture. It is easy to hek that kt is an isotopy id ' id supported on�N(q; 4�), with kt(f 0t(q)) = q for all t. The isotopy kt Æ f 0t : bf ' g is thus rel fqg, and so(q; bf ) � (q; g) using this isotopy and the onstant path.If p is on the boundary, �nd bf and � using the remark after Lemma 2.1. If q is in theinterior, proeed as above. If q is on the boundary, then the path t 7! f 0t(q) is also, andthe isotopy kt an be onstruted as above. If p is a periodi point instead of a �xed point,hoose the initial Æ so that the balls N(f i(p); Æ) are disjoint harts. The generalization toperiodi point olletions is straightforward.To prove the seond sentene of the proposition, note that (q ; g) 2 PPC and q 2A by unollapsibility and strong Nielsen boundedness respetively. By the �rst partof the proposition, (q ; g) is strong Nielsen equivalent to all suÆiently lose periodipoint olletions in the strong approximating family, and hene (p ; f) � (q ; g) by thetransitivity of �.The seond proposition is a standard form whih is needed for any theory of Nielsentype. It says that the strong Nielsen lass of an unollapsible and strong Nielsen boundedperiodi point olletion (p ; f) is both open and losed in the appropriate �xed pointset, and thus its index is de�ned. The index is also de�ned for any (q ; g) � (p ; f), byRemark 2.3 ): the seond statement of the proposition says that the index is independentof the hoie of periodi point olletion in the strong Nielsen equivalene lass. Thefollowing notation is used in the proof of this proposition: if ./ is a binary relation, anda(i) and b(i) are expressions dependent on a positive integer i, then a(i) ./i b(i) meansthat a(i) ./ b(i) for all suÆiently large i.Proposition 2.3 If (p ; f) is unollapsible and strong Nielsen bounded, then sn(p ; f) isompat, and open in Fix(F(f)). If (q ; g)� (p ; f) then I(q ; g) = I(p ; f).Proof. Compatness: Let qi be a sequene in sn(p ; f) with qi ! q 2Mk. Then thereis a strong approximating family (ft = f; 1� 1=i;qi) from (p ; f) to (q ; f), and hene(p ; f) � (q ; f) by Proposition 2.2: that is, (q ; f) 2 sn(p ; f). Thus sn(p ; f) is losedin the ompat spae Mk .Openness in Fix(F(f)): Let q 2 sn(p ; f), and let qi 2 Fix(F(f)) with qi ! q. Thenqi 2i P (f) by ontinuity, and hene (qi ; f) �i (q ; f) � (p ; f) by Proposition 2.2. Thusqi 2i sn(p ; f).Independene of index: Suppose that (p ; f) � (q ; g) by a path pt and an isotopy ft.For eah integer m, de�ne Im = ft 2 [0; 1℄ : I(pt ; ft) = mg. The result will be proved byshowing that eah Im is open in [0; 1℄. 10



Suppose then that there is some Im whih is not open, and pik a 2 Im n Int(Im).By the �rst part of the proof, there exist � > 0 and an open subset U of Mk withU \ Fix(F(fa)) = sn(pa ; fa) and N(sn(pa ; fa); �) � U .For eah i � 1 de�ne Vi = N(sn(pa ; fa); �=2i). Then V 1 n Vi is ompat and disjointfrom Fix(F(fa)) for eah i, so there exist numbers Æi > 0 with d(x;F(fa)(x)) > Æi for allx 2 V 1 n Vi. It is therefore possible to pik a sequene ti ! a in [0; 1℄ with ti 62 Im andFix(F(ft)) \ V 1 = Fix(F(ft)) \ Vi for all t between ti and a. Write fi for fti and pi forpti .Now I(pa ; fa) = index(V1;F(fa)) = index(V1;F(fi)) = index(Vi;F(fi))for all i by the homotopy and exision properties of the index. The required ontraditionwill be obtained by showing that Fix(F(fi)) \ Vi =i sn(pi ; fi), so that I(pi ; fi) =i m.a) To show that sn(pi ; fi) �i Fix(F(fi)) \ Vi: if not, then (taking a subsequeneif neessary) there exist points qi 2 sn(pi ; fi) \ (Mk n V1) with qi ! q 2 Mk n V1.Now (qi ; fi) � (pi ; fi) � (p ; f), and so (ft; ti;qi) is a strong approximating family from(p ; f) to (q ; fa). It follows by Proposition 2.2 that (q ; fa) � (p ; f) � (pa ; fa). Thusq 2 sn(pa ; fa), ontraditing q 62 V1.b) To show that Fix(F(fi)) \ Vi �i sn(pi ; fi): if not, then (taking a subsequene ifneessary) there exist points qi 2 Fix(F(fi)) \ Vi n sn(pi ; fi) with qi ! q 2 Mk , andq 2 sn(pa ; fa) by de�nition of the Vi. Thus qi 2i P (fi), and it follows that (qi ; fi) �i(q ; fa) by Proposition 2.2. Thus (qi ; fi) �i (pa ; fa) � (pi ; fi), so that qi 2i sn(pi ; fi),whih is a ontradition.2.3 The unremovability theoremTheorem 2.4 LetM be a ompat smooth orientable manifold, and A a ompat subset ofM . Let (p ; f) be a periodi point olletion whih is unollapsible, strong Nielsen bounded,and essential. Then (p ; f) is unremovable.Proof. Let g 2 Aut(M;A) be isotopi to f , and pik a rel A isotopy ft: f ' g. De�neT = ft 2 [0; 1℄ : there exists qt 2 P (ft) with (qt ; ft) � (p ; f)g:The set T is losed in [0; 1℄ by Proposition 2.2: sine 0 2 T , it therefore suÆes to showthat T is also open in [0; 1℄.Fix t0 2 T , and let S = sn(qt0 ; ft0). By Proposition 2.3, S is ompat and open inFix(F(ft0)), and index(S;F(ft0)) 6= 0. Choose � > 0 suh that N(S; �)\Fix(F(ft0)) = S.11



By Proposition 2.2 and the ompatness of S, there exists � < � suh that if jt� t0j < �and qt 2 Fix(F(ft)) with d(qt; S) < �, then qt 2 P (ft) and (qt ; ft) � (qt0 ; ft0) � (p ; f).Let N = N(S; �). Then �N is ompat and disjoint from Fix(F(ft0)), and hene thereexists � < � suh that Fix(F(ft))\�N = ; whenever jt� t0j < �. By the homotopy axiomof the index, it follows that for any suh t there exists qt 2 N\Fix(F(ft)). By the previousparagraph, qt 2 P (ft) and (qt ; ft) � (p ; f), and hene t 2 T whenever jt � t0j < �. ThusT is open in [0; 1℄ as required.Remarks 2.4a) Suppose that (p ; f) is a periodi point olletion onsisting of a single periodipoint, and that (p ; f) � (a ; f) for some a 2 A. Then (p ; f) is ertainly unremovable(sine (a ; f) � (a ; g) by the onstant path whenever g is isotopi to f rel A), butthe hypotheses of the theorem annot be satis�ed, as (p ; f) is not strong Nielsenbounded. This ase often needs to be onsidered separately in appliations.b) An elementary but useful observation is that if A0 is a ompat invariant subset ofA, then a periodi point olletion whih is unremovable rel A0 is also unremovablerel A.3 Criteria for unollapsibility and Nielsen boundednessIn this setion a number of onditions are given whih imply the hypotheses of strongNielsen boundedness and unollapsibility. These onditions require a variety of additionalNielsen-type de�nitions: Nielsen bounded away from a point in A and a regular point inA (De�nition 3.1); Nielsen separated (De�nition 3.2); and irreduible (Remarks 3.2 b)).Reall (Remark 2.3 a)) that, ontrary to what is suggested by the terminology, Nielsenbounded implies strong Nielsen bounded.3.1 Conditions for Nielsen boundednessTwo onditions are given whih imply that a given periodi point olletion is Nielsenbounded away from A. The �rst de�nes what it means for a periodi point (p; f) to beNielsen bounded away from a spei� point a 2 A. Informally it says that not only is p notNielsen equivalent to a, but it is never Nielsen equivalent to a periodi point (q; g) with qlose to a. Proposition 3.1 b) states that being Nielsen bounded away from all ompatibleperiodi points in A implies that a periodi point is Nielsen bounded away from A.The seond ondition is not on the periodi point p, but rather is a ondition on apoint a 2 A. Suh a point is alled regular if it is Nielsen equivalent to all nearby periodipoints of all nearby maps. The simplest example of a regular point is an isolated point of12



A. Proposition 3.1 a) states that if a periodi point is not Nielsen equivalent to a regularpoint a 2 A, then it is Nielsen bounded away from it.If f 2 Aut(M;A), then let [f ℄ denote its rel A isotopy lass.De�nition 3.1 A period n point (p; f) is said to be Nielsen bounded away from a 2 A,if there exists a ontinuous positive funtion Æ : [f ℄ ! R+ suh that (p; f) is not Nielsenequivalent in FIX(n) to any periodi point (q; g) with g 2 [f ℄ and q 2 N(a; �(g)). A periodn point (a; f) with a 2 A is alled regular if there exists a ontinuous positive funtion� : [f ℄�Z! R+ suh that for all m 2 Z, (q; g) 2 FIX(mn) and d(q; a) < �(g;m) impliesthat (q; g) is Nielsen equivalent to (a; f) in FIX(mn).Proposition 3.1a) If (p; f) is a period n point whih is not Nielsen equivalent to a regular point (a; f),then it is Nielsen bounded away from it.b) If every periodi point p� in the periodi point olletion (p ; f) is Nielsen boundedaway from every periodi point a 2 A whose period divides that of p�, then (p ; f) isNielsen bounded away from A.) If every periodi point p� in an unollapsible periodi point olletion (p ; f) isNielsen bounded away from every periodi point a 2 A whih is strong Nielsen equiv-alent to p� relative to the empty set, then (p ; f) is strong Nielsen bounded awayfrom A.Proof. For part a), �rst note that if (a; f) is not in FIX(n) then the result follows diretly,so assume (a; f) 2 FIX(n). It will be shown that (p; f) is Nielsen bounded away from awith a funtion Æ = �(�; n). If this is not the ase then (p; f) is Nielsen equivalent to some(q; g) 2 FIX(n) with d(q; a) < �(g; n). By regularity, (q; g) is Nielsen equivalent to (a; f)in FIX(n). By transitivity, (p; f) is Nielsen equivalent to (a; f), a ontradition.For part b), assume �rst that the periodi point olletion onsists of a single period npoint p whih is Nielsen bounded away from every periodi point in A whose period dividesn, but is not Nielsen bounded away from A. Then there exists an approximating family(ft: f ' g; ti; qi) with qi ! a 2 A. By ontinuity, a is a periodi point of g, and heneof f , with period dividing n, and so (p; f) is Nielsen bounded away from it. However,�(fti) ! �(g) > 0 and d(qi; a) ! 0, so (p; f) annot be Nielsen equivalent to (qi ; fti) forlarge i, a ontradition. The generalization to periodi point olletions with multiplemembers is immediate.The proof of part ) is similar to that of part b). Assume that the periodi pointolletion onsists of a single period n point p whih is Nielsen bounded away from everyperiodi point in A whih is strong Nielsen equivalent to p relative to the empty set. If13



(p; f) is not strong Nielsen bounded away from A, then there is a strong approximatingfamily (ft: f ' g; ti; qi) with qi ! q 2 A. Sine (p; f) is unollapsible, a is a period npoint of g, and hene of f : moreover (qi; fti) � (a; g) � (a; f) relative to the empty set fori suÆiently large by proposition 2.2. Hene (p; f) is Nielsen bounded away from (a; f),and a ontradition follows as in part b).Remarks 3.1a) If A ontains no periodi points, then it follows that any periodi point olletion isNielsen bounded away from A.b) If there exists B � A suh that N(B; �) \ A is f -invariant for arbitrarily small �,then it may be possible to prove unremovability rel A nN(B; �) as in Remark 2.4 b).) By Proposition 3.1 ), if M is a surfae and (p ; f) is an unollapsible periodi pointolletion, then it is only neessary to hek that eah point in the olletion isNielsen bounded away from all of the periodi points of A whih have the samebraid type (see [6℄ for the de�nition of braid type and related information).3.2 Criteria for unollapsibilityIn this setion a riterion for unollapsibility is given whih is frequently useful in applia-tions. It is assumed that the periodi point olletion is strong Nielsen bounded away fromA, so that the argument fouses on behavior in the omplement. The subsequent remarks(Remarks 3.2) ontain brief desriptions of two other methods of showing unollapsibility.De�nition 3.2 Let (p ; f) 2 PPC with p 2 A. Then (p ; f) is Nielsen separated rel Aif any two distint points of S� o(p�; f) whih have the same period n lie in distintfn-Nielsen lasses rel A.Lemma 3.2 Let f 2 Aut(M;A), and p0 and p1 be �xed points of fn lying in A. Thenthere exists � > 0 suh that if g 2 Aut(M;A) is �-isotopi to f rel A, and q0 and q1 are�xed points of gn with d(pi; qi) < � for eah i, then p0 and p1 are in the same fn-Nielsenlass rel A if and only if q0 and q1 are in the same gn-Nielsen lass rel A.Proof. Suppose �rst that p0 and p1 lie in the same fn-Nielsen lass, and let  be a pathin A from p0 to p1 with fn() '  rel A. Sine  and fn() are bounded away from A,it follows that if � is suÆiently small then the path � from q0 to q1 obtained from  byadjoining short paths from q0 to p0 and from p1 to q1 satis�es gn(�) ' �.For the onverse, suppose that p0 and p1 lie in distint fn-Nielsen lasses. Let N0 andN1 be disjoint oordinate neighborhoods of these two points, eah disjoint from A. If � is14



small enough then there are paths �i in Ni from pi to qi, whose images under gn also liein Ni. Now suppose that q0 and q1 lie in the same gn-Nielsen lass, and let  be a pathfrom q0 to q1 with gn() ' . Write � = �0 �  � ��11 . Sine fn() is homotopi to gn()by a homotopy in whih the endpoints remain in N0 [ N1, it follows that fn(�) ' �, aontradition.Lemma 3.3 Suppose that (p ; f) is strong Nielsen bounded. If (p ; f) is Nielsen separated,then so is (q ; g) whenever (p ; f) � (q ; g).Proof. Let � and � be suh that n� = n� = n, and i and j be integers between 0 andn � 1. Suppose that (�; i) 6= (�; j). It is required to show that gi(q�) and gj(q�) lie indistint fn-Nielsen lasses rel A.Let (p ; f) � (q ; g) by a path pt and an isotopy ft: f ' g. Let S be the set of allt 2 [0; 1℄ suh that f it (pt�) and f jt (pt�) lie in distint fnt -Nielsen lasses rel A. Then 0 2 S,and S is open and losed in [0; 1℄ by Lemma 3.2.Proposition 3.4 If (p ; f) is strong Nielsen bounded and Nielsen separated, then it isunollapsible.Proof. Suppose to the ontrary that (p ; f) is strong Nielsen bounded and Nielsen sep-arated, but is not unollapsible. Let (ft; ti;qi) be a strong approximating family from(p ; f) to (q ; g), where q 62 P (g). Sine (p ; f) is strong Nielsen bounded, it follows thatq 2 A.Suppose �rst that there is some � with q� 62 Pn�(g). Then for i suÆiently large, thereare distint points of the orbit of qi� whih lie in the same fn�ti -Nielsen lass by Lemma 3.2applied to g (taking p0 = p1 = q�). This ontradits Lemma 3.3.If this is not the ase, then there exist distint indies � and � suh that the orbits ofq� and q� oinide (and both have period n� = n� , sine the �rst ase does not our).Using Lemma 3.2 again, this implies that for i suÆiently large there are points on theorbits of qi� and qi� whih lie in the same fn�ti -Nielsen lass, ontraditing Lemma 3.3.Remarks 3.2a) Fixed points are trivially unollapsible.b) A periodi point olletion (p ; f) 2 PPC(n) onsisting of a single period n point issaid to be irreduible if there is no proper divisor m of n suh that there exists a path from p to fm(p) for whih the loop  � fm() � : : :� fn�m() is homotopially trivial(see for example [23℄). If (p ; f) has the property that the periods of all the points p�15



are distint, then say that (p ; f) is irreduible if eah (p� ; f) is irreduible. Supposeall of the periods in (p ; f) are distint, and that (p ; f) is strong Nielsen bounded.Then it an be shown that if (p ; f) is Nielsen separated, then it is irreduible; andif it is irreduible, then it is unollapsible. There does not seem to be a sensibleextension of the de�nition of irreduibility to the ase in whih the periods of thepoints in the olletion are not all distint.) A ommon situation in examples is that for eah n � 1, all of the �xed points offn are in di�erent Nielsen lasses. This implies that any periodi point olletionis Nielsen separated. Hene for suh a map any periodi point olletion whih isstrong Nielsen bounded is unollapsible.d) It is often the ase in two-dimensional appliations that (p ; f) an be shown to beunollapsible by using the mutual linking properties of the di�erent periodi orbits inthe olletion. Suppose, for example, that M = D2, that p1 and p2 are �xed pointsof f whih lie in di�erent f -Nielsen lasses rel A, and that p3 is a period n orbit of fwhih has rotation numbers m1=n and m2=n in the annuli D2 n fp1g and D2 n fp2g,with (m1; n) = (m2; n) = 1. Then if ((p1; p2; p3) ; f) is strong Nielsen bounded, itis unollapsible. For the ontinuations of p1 and p2 annot ollide, sine they liein di�erent Nielsen lasses; the ontinuation of p3 annot period-divide exept ontothe ontinuation of p1, sine otherwise its rotation number about p1 would have tohange disontinuously; and similarly the ontinuation of p3 annot period-divideexept onto the ontinuation of p2. Similar arguments an sometimes be appliedindutively to a large olletion of periodi points, using the linking of the orbit ofeah p� about that of p��1 to rule out period-division of the ontinuation of p� (seefor example the proof of lemma 9.9 of [17℄).4 Examples and Appliations4.1 First ExamplesThe two examples in this setion are intended to illustrate some of the de�nitions, and toshow simple appliations of the main theorem and propositions. In the �rst, Theorem 2.4 isused to show the unremovability of a pair of �xed points of a homeomorphism relative to aninvariant set whih is minimal (i.e. every orbit in A is dense in A). In the seond example,A has a limit point whih is �xed, and a �xed point in A is seen to be unremovableafter showing that it is unremovable relative to an invariant subset of A, illustratingRemark 3.1 b).Both examples are homeomorphisms of the two-sphere S2, regarded as the Riemannsphere C [ f1g. The origin and the point 1 beome the south and north pole, denotedS and N respetively. 16



For the �rst example, start with a homeomorphism g:S1 ! S1 whih is a Denjoyounterexample, so that g has a minimal invariant Cantor set (see for example [10℄).De�ne G: C ! C by G(z) = jzj exp(ig(arg(z))), and extend G to a homeomorphism ofS2. Let A be the minimal invariant Cantor set in the unit irle (the equator). It willbe shown that ((N; S) ;G) is unremovable relative to A. Observe �rst that it is strongNielsen bounded away from A, sine A ontains no periodi points (Remark 3.1 a)). NowN and S lie in distint G-Nielsen lasses rel A. To see this, note that for any path from N to S in A, the �rst gap of A through whih it passes is a well-de�ned, homotopyinvariant notion. The ation of G is suh that this gap is di�erent for f(), and so  andf() are never homotopi rel endpoints. Thus ((N; S) ;G) is Nielsen separated, and heneunollapsible by Proposition 3.4. Finally, eah of the two �xed points has G-index +1,and hene I((N; S) ; G) = 1 by the produt property of the index. The periodi pointolletion is therefore essential, and hene unremovable by Theorem 2.4. In partiular,any homeomorphism whih is isotopi to Grel A has at least two �xed points.For the seond example, �x for eah n � 1 a irle homeomorphism hn:S1 ! S1 suhthat the rotation number �(hn) is non-zero, and that hn has either a periodi orbit or aDenjoy minimal set (equivalently, hn does not have a �xed point or a dense orbit). De�neH on the irle jzj = 1=n by H(z) = exp(ihn(arg(z)))=n, and extend to a homeomorphismH : C ! C whih has only two �xed points, N and S. For eah n � 1, let An be a periodiorbit or Denjoy minimal set in the irle By a similar argument to that used in the �rstexample, it an be seen that N is is unremovable relative to An for any n, and thus isunremovable rel A = SnAn [ fSg.4.2 Nielsen equivalene to points in AThis example illustrates the importane of the Nielsen boundedness hypothesis. A positiveindex �xed point p in A, whih is alone in its Nielsen lass and is not Nielsen equivalent toany point in A is shown to be removable. By Theorem 2.4 it follows that p is not boundedaway from A: in fat, it is not Nielsen bounded away from any a 2 A.Let B = [0; 2℄� S1 be an annulus of width 2 with oordinates (s; �), and denote itsinterior Bo = (0; 2)� S1. De�ne �: (0; 2)! R by�(s) = ( log(s) if 0 < s � 1� log(2� s) if 1 � s < 2;and � : Bo ! Bo by �(s; �) = (s; �+ �(s)). Thus � twists the interval (0; 2)� f0g aroundthe annulus in�nitely many times.De�ne a lass of allowable homeomorphisms g : B ! Bg(s; �) = (s+ �(s; �); �+ (s; �))17



by imposing that � and  satisfy�(s; �)s ! 0; (s; �)! 0as s ! 0 uniformly in � and analogous onditions near the other boundary of B: theonditions on  just say that g is the identity on �B. Notie that, given any ow on Bwhih is �xed on �B, the time parameterization may be adjusted so that the time onemap of the ow is an allowable homeomorphism.For any allowable g, de�neG(z) = ( � Æ g Æ ��1 if z 2 Boz if z 2 �B:Then the onditions on �(s; �) and (s; �) imply that G is a homeomorphism of B. Tosee this, simply write out the expression for G(s; �) expliitly in the ase s 2 (0; 1), andobserve that G(s; �)! G(0; �) as s ! 0 and G(s; �) ! G(2; �) as s ! 2 for eah �xed �.Hene G is a ontinuous bijetion, and therefore a homeomorphism.
Figure 1: Flows on the annulus with time one maps g0 (left) and g1 (right)Now let  0;t and  1;t be ows with trajetories as shown in Figure 1 a) and b) re-spetively. Adjust the time parameterization so that their time one maps, g0 and g1, areallowable homeomorphisms, and so that g0 and g1 agree on I = [0; 2℄� f0g. By ontinu-ously deforming the �rst ow into the seond, an isotopy gt: g0 ' g1 relative to I [�B anbe onstruted in suh a way that eah gt is also allowable. The isotopy Gt = � Æ gt Æ ��1on Bo an thus be extended to the identity on �B, and this extended isotopy is relativeto �(Io) [ �B. Let A = �(X) [ �B, where X = o(x; g0) = o(x; g1) is the orbit of somepoint x in the interior of I .Let p be the unique �xed point of G0 in A, whih is alone in its G0-Nielsen lassrelative to A and has index +1. It must be removable rel A as G1 has no �xed point in A.Further, it is easy to hek that (p ;G0) is not Nielsen equivalent to any a 2 A. Informallyspeaking, p has been removed by an isotopy whih pushes it onto all of A despite the fatthat it is not Nielsen equivalent to any point in A.18



4.3 An in�nite orbit with an unremovable horseshoeThis example is due to Mihael Handel (personal ommuniation and [20℄), and illustrateswhat he alls a `homotopy horseshoe'. It may be viewed as arising from a Nielsen-Thurstontype theory for mapping lasses with `translation ends' on nonompat surfaes [21℄ (f.[12℄). The example onsists of a homeomorphism 	:D2 ! D2 of the two-disk. Theompat invariant set A is the losure of a single orbit traveling from one point on �D2 toanother. The nonwandering set � of 	 in the interior of D2 is a Smale horseshoe, and istherefore a Cantor set on whih the dynamis is onjugate to the full shift on two symbols:it will be shown that all of the periodi points in � are unremovable relative to A.Write D2 = [0; 1℄� [�1; 1℄, and de�ne T :D2 ! D2 by T (x; y) = (px; y). Set x0 =(1=2; 0), and write xi = T i(x0) for eah integer i, so that X = fxi : i 2 Zg is the orbit ofx0 under T . Let A be the losure of X , so that A = X [ f�g [ f!g, where � = (0; 0) and! = (1; 0).The rel A isotopy lass of 	 will be that of D Æ T , where D is a lokwise Dehn twistabout a simple losed urve whih is ontained in (1=4; 1= 4p2) � [�1; 1℄, and bounds adisk ontaining x0 and x1. The onstrution of an expliit map 	 in this isotopy lassgeneralizes that of [13℄ from the ase of a periodi orbit to that of an in�nite disrete orbit.For eah i 2 Z, let Ri = [ai; bi℄ � [�1=2; 1=2℄ be a `thin' retangle whih ontains xi butno other points of X , and let Bi = [bi; ai+1℄� [�1=2; 1=2℄ be a retangle whih joins Ri toRi+1. Then onstrut 	 in the isotopy lass of D Æ T in suh a way that (see �gure 2)a) 	(Ri) � Ri+1, and 	 ats as a strit ontration on Ri for eah i.b) 	(Bi) \ Bj is only non-empty when this is required by the isotopy lass: that is	(Bi) intersets only Bi+1, exept in the ases i = �2 and i = 0, where 	(Bi) alsointersets B0.) When 	(Bi) \ Bj 6= ;, then horizontal and vertial lines in Bi \ 	�1(Bj) are sentto horizontal and vertial lines in Bj , with a uniform expansion and ontrationrespetively.d) 	 agrees with T on �D2: all of the interior periodi points of 	 lie in the retanglesBi (in fat they all lie in B0).Notie that the image of B0 rosses over B0 as in a Smale horseshoe. Let � be theresulting ompat invariant set (i.e. the set of points whose entire orbit lies in B0). Everyperiodi point in � has index �1. Moreover, it an be shown (see the next paragraph),�rst, that all of these periodi points are Nielsen bounded away from � and ! (with theexeption of the �xed point labeled q in �gure 2, whih is strong Nielsen equivalent to allof the �xed points on �D2); and seond, that for eah n, all of the �xed points of 	n in �19
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Figure 2: Constrution of the homeomorphism 	lie in distint 	n-Nielsen lasses rel A. Sine the fundamental group of D2 nA is free, andhene has trivial enter, this seond fat also implies that eah of the periodi points in� is alone in its strong Nielsen lass (Remark 2.1 f)). Hene any periodi point olletion(p ;	) for whih eah p� is an interior periodi point distint from q is strong Nielsenbounded, unollapsible (by Proposition 3.4), and essential, and hene is unremovable byTheorem 2.4. In partiular, any homeomorphism in this isotopy lass has a periodi orbitof eah braid type whih is present in Smale's horseshoe.There are at least two ways to prove the two assertions in the previous paragraph. The�rst is to use the ation of 	 on �1(D2nA) in onjuntion with the symboli desription of� to ompute twisted onjugay lasses diretly. Di�erent periodi points in � will havenonequivalent lasses implying that the periodi points are in di�erent Nielsen lasses.Further, none of these lasses ontain a representative ontaining just the generators near� or those near !. This implies that the periodi points annot be Nielsen equivalent to aperiodi point near � or !, i.e. the periodi points are bounded away from � and !. Theseond method of proof [22℄ is to adapt the Bestvina-Handel algorithm [3℄ to the ase ofsuh an in�nite orbit X to onstrut a pseudo-Anosov-like representative � of the isotopylass whih is essentially the same as 	 (see [21, 12℄), and then to imitate the usual prooffor pseudo-Anosov maps by lifting the invariant laminations to the universal over [19℄.4.4 Unremovability relative to a generalized adding mahineIn this setion, a homeomorphism �:D2 ! D2 is de�ned whih has a minimal invariantCantor set A, relative to whih all of the periodi points of � are unremovable. Therestrition of � to A is onjugate to a generalized adding mahine, but (even when apartiular onjugay lass of adding mahine has been hosen) there are in�nitely manyhoies during the onstrution whih inuene the isotopy lass of � relative to A. Fromthe point of view of Nielsen-Thurston theory, � may be thought of as the analogue of aNielsen-Thurston anonial representative of a reduible isotopy lass whih has in�nitelymany omponents. For the sake of brevity, it will be assumed that the reader is familiarwith Nielsen-Thurston theory: more information an be found in [11, 6℄.20



The restrition �:A! A falls into the lass of minimal dynamial systems whih aretermed generalized adding mahines (the terms odometer and dial are also used). Thesuspension ows of these systems are alled generalized solenoids. Generalized addingmahines have a long history in dynamis. They arise naturally in area preserving mapsof the plane, where one �nds in�nite nested families of ellipti periodi orbits, eah onerotating about the one before it in the family. The adding mahine arises as a limit of theseorbits (see [4℄ Setion 7). The suspension of this situation arises generially in Hamiltonianows [27℄. Generalized adding mahines as minimal dynamial systems have also beenstudied extensively in the topologial dynamis literature. Buesu and Stewart [8℄ showthat whenever A is a ompat Lyapunov stable transitive invariant set for a disretedynamial system f :X ! X , where X is loally ompat and loally onneted, thedynamis of f on the omponents of A is topologially onjugate to a generalized addingmahine.The onstrution of a disk homeomorphism detailed here is a generalization of thesituation on whih Birkho� ommented, and is quite familiar from examples of Kupka-Smale di�eomorphisms with no soures or sinks [5, 14, 30℄ and related onstrutions [15℄.The �rst step is to de�ne a family of nested disks in D2 on whih the ation of � willsubsequently be de�ned. The nested disks will be indexed symbolially in the followingway. Let n0 = 1, and �x a list (ni)i�1 of integers with ni > 1 for eah i. For eah k � 0,de�ne Sk � Zk by Sk = f(s1; s2; : : : ; sk) : 1 � si � nig, and extend this de�nition to thease k =1 in the obvious way. An allowable sequene s is de�ned to be an element of Skfor some k 2 N[f1g. For 1 � k <1, the projetion p:Sk ! Sk�1 is de�ned by droppingthe last element of the sequene, so p(s1; : : : ; sk) = (s1; : : : ; sk�1).For eah k 2 N[f1g, the addition map �k:Sk ! Sk adds one to s1 and arries to theright: that is, �k((s1; : : : ; sk)) = (t1; : : : ; tk), whereti = ( si + 1 if sj = nj for all j < isi otherwise.Equipping Sk with the produt topology, eah �k is a minimal homeomorphism of Sk (fork 6=1, there is only one orbit of �k). In the ase k =1, the dynamial system (S1; �1)is alled the generalized adding mahine desribed by the list (ni). Distint lists an giverise to onjugate adding mahines [8, 9℄.It will be onvenient in what follows to say that n (irular) subdisks D1; : : : ; Dn ofa (irular) disk D are plaed regularly in D if they are mutually disjoint, all have thesame radius, and have enters equidistant from the enter of D and at angles 2�j=n. (Inpartiular, this means that their radii are less than half that of D). Let D = D2 be theunit disk, and plae n1 disks, labeled Ds for s 2 S1, regularly in D. In eah of thesen1 disks Ds, plae regularly n2 disks labeled Dt, where t 2 S2 and p(t) = s. Proeed21



indutively: at the ith stage of the onstrution, for eah s 2 Si�1, plae regularly in Dsni disks labeled Dt, where t 2 Si and p(t) = s. Sine the diameters of the disks tend tozero as i!1, it follows that A = \k�1 [s2SkDsis a Cantor set, and there is a natural homeomorphism h:A ! S1 given by h(x) =(s1; s2; : : :), where x 2 D(s1;:::;sk) for eah k.For eah �nite allowable sequene s 2 Sk, let Cs be an annular ollar of the boundaryof Ds, hosen in suh a way that all of these ollars are mutually disjoint. Let D̂s be thelosure of the disk Ds minus the disks and ollars inside it,D̂s = l(Ds n [t:p(t)=s(Dt [ Ct)):Then de�ne the kth level of the disk olletion to beLk = [s2Sk D̂s:Figure 3 shows two stages of the onstrution with n1 = 3 and n2 = 2.
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C(1)Figure 3: Initial stages of the onstrution of � with n1 = 3 and n2 = 2Now de�ne the homeomorphism �:D2 ! D2 by de�ning it on eah level Lk and on eahof the ollars. For eah k, the restrition �:Lk ! Lk is required to satisfy �(D̂s) = D̂�k(s)for eah s 2 Sk. Thus the olletion of D̂s with s 2 Sk are ylially permuted by � withperiod mk = Q1�i�k ni. Hene �mk is a homeomorphism of eah D̂s, whih is required tobe either pseudo-Anosov, or an adapted �nite order map, with the latter being de�ned asfollows.If B is a disk with m regularly plaed holes, then an adapted �nite order map of Bis a rigid rotation of angle 2�j=m for some j, followed by the time one map of the ow22



depited in �gure 4 for the ase m = 3. Note that j must be hosen oprime to m, inorder that the holes are ylially permuted by the map. By making the time one map ofthe ow an irrational rotation on all of the boundary omponents of B, it an be arrangedthat the only periodi point is the �xed point at the enter of B.
Figure 4: The ow used in the onstrution of an adapted �nite order mapNow extend � over the ollars Cs in suh a way that there are no periodi points inthe interiors of the ollars (so for s 2 Sk , �mk ould push all orbits from one boundary ofCs to the other). No other onstraint is plaed on the behavior of � on the ollars: up toisotopy, this is de�ned by the number of Dehn twists along their ore irles.Beause the diameters of the disks tend to zero, there is a unique extension of � overA whih makes it a homeomorphism of D2, and the restrition �:A! A is onjugate viah:A ! S1 to the generalized adding mahine �1:S1 ! S1. Notie that the isotopylass of � relative to A is determined by the preise hoie of adapted �nite order orpseudo-Anosov maps on eah level, and by the number of Dehn twists in the ollars. Inpartiular, there are unountably many suh hoies for eah onjugay lass of generalizedadding mahine.The map � has one periodi orbit on eah �nite order level, and in�nitely many periodiorbits on eah pseudo-Anosov level. It will be shown that eah of these periodi orbits isunremovable relative to A. Notie �rst that A ontains no periodi points, and hene allof the periodi points are Nielsen bounded away from A (Remark 3.1 a)). Next, by aneasy extension of the usual Nielsen-Thurston ase (see [7℄ Setion 1), no periodi point inthe interior of a level Lk is in the same Nielsen lass rel A as any other periodi point,under any iterate of �. By onstrution, these periodi points all have non-zero index.Periodi points on the boundary of a level Lk ause slightly more diÆulty. They maylie in the same Nielsen lass as other points of the same orbit (on the same boundaryomponent), and may not therefore be Nielsen separated: they are, however, irreduible(Remark 3.2 b): see [7℄ where irreduible is alled \unollapsible"). They may also lie inthe same Nielsen lass as periodi points on the other boundary of the ollar Cs to whih23
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