UF Math Colloquium

Eric Moorhouse, University of Wyoming
Title: Planes, Nets and Webs

Abstract:

A (2-dimensional) k-web has point set $\mathcal{W} \subset \mathbb{R}^{2}$, an open neighbourhood of $\mathbf{0}$. It has k smooth coordinate functions $x_{1}, x_{2}, \ldots, x_{k}: \mathcal{W} \rightarrow \mathbb{R}$ such that for all $i \neq j, \nabla x_{i}$ and ∇x_{j} are linearly independent throughout \mathcal{W}; also $x_{i}(\mathbf{0})=0$.

The level curves for $x_{1}, x_{2}, \ldots, x_{k}$ intersect transversely, forming the 'lines' of the web. Point $P \in \mathcal{W}$ has k coordinates $x_{1}(P), x_{2}(P), \ldots, x_{k}(P)$, any two of which uniquely determine the point P. Two webs are the same if they agree in a neighbourhood of $\mathbf{0}$ (so only the germs of the coordinate functions x_{i} are relevant).

Consider the vector space \mathcal{V} consisting of all k-tuples $\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ of smooth functions $f_{i}: \mathbb{R} \rightarrow \mathbb{R}$ such that $f_{i}(0)=0$ and

$$
f_{1}\left(x_{1}(P)\right)+\cdots+f_{k}\left(x_{k}(P)\right)=0
$$

for all $P \in \mathcal{W}$. The rank of \mathcal{W} is $\operatorname{dim} \mathcal{V} \leqslant \frac{1}{2}(k-1)(k-2)$ (cf. Lie, Poincaré, Chern and Griffiths). Some examples attaining this upper bound are obtained from plane curves of degree k having maximal genus (so-called extremal curves).

We are interested in finite analogues of webs, as follows. A k-net of prime order p has p^{2} points and $p k$ lines. Each line has p points. There are k parallel classes of lines, and each parallel class partitions the points. We must have $k \leqslant p+1$; and a $(p+1)$-net is the same thing as an affine plane of order p. Affine planes of prime order exist, by a classical construction using finite fields. A celebrated open problem asks if non-classical planes of prime order also exist. I have conjectured that the rank bound, stated above for webs, also holds for nets. The validity of this conjecture would imply that non-classical planes of prime order cannot exist.

