HW2 - Due Friday, February 3, start of class
 No electronic submissions, only hard copy Be sure to justify all your answers completely.

1. (10 points) For $a>0$ let

$$
\begin{equation*}
g(x)=\frac{x^{3}+3 a x}{3 x^{2}+a} \tag{1}
\end{equation*}
$$

(a) Show that the fixed points of g are $0, \pm \sqrt{a}$.
(b) Show that g is locally convergent at \sqrt{a}.
(c) Show that g has a cubic rate of convergence at \sqrt{a}.
(d) Compute the asymptotic constant

$$
\begin{equation*}
M=\lim _{n \rightarrow \infty} \frac{\left|\sqrt{a}-x_{n+1}\right|}{\left|\sqrt{a}-x_{n}\right|^{3}} \tag{2}
\end{equation*}
$$

where $x_{n}=g^{n}\left(x_{0}\right)$ and x_{0} is chosen close enough to \sqrt{a} so that $x_{n} \rightarrow \sqrt{a}$. Hint: use formulas (1) and (2) directly and not the third derivative.
2. Let $f(x)=\cos (x)+\sin ^{2}(50 x)$.
(a) Write a computer program to implement Newton's method for f.
(b) By doing numerical experiments, find out how close to the root $p=\pi / 2$ an initial point x_{0} needs to be in order to have the Newton iterates x_{n} converge to $p=\pi / 2$.
(c) Explain your results.
3. Let

$$
G(x, y)=\left(\frac{.25}{1+(x+y)^{2}}, \frac{.25}{1+(x-y)^{2}}\right)
$$

Find a convex region B with $G(B) \subset B$ and $\|D G\|_{\infty} \leq k<1$ for some k for all $(x, y) \in B$. Conclude then that G has a unique fixed point in B.
4. Let $f(x)=\log (x), x_{0}=1, x_{1}=1.75, x_{2}=2$. Find the total error bound for the degree two interpolating polynomial $P_{2}(x)$ with these nodes and f on the interval [1, 2], i.e. find a K with

$$
\max _{t \in[1,2]}\left|f(t)-P_{2}(t)\right| \leq K
$$

