HW2 – Due Friday, February 3, start of class No electronic submissions, only hard copy Be sure to justify all your answers completely.

1. (10 points) For a > 0 let

$$g(x) = \frac{x^3 + 3ax}{3x^2 + a}.$$
(1)

- (a) Show that the fixed points of g are $0, \pm \sqrt{a}$.
- (b) Show that g is locally convergent at \sqrt{a} .
- (c) Show that g has a cubic rate of convergence at \sqrt{a} .
- (d) Compute the asymptotic constant

$$M = \lim_{n \to \infty} \frac{|\sqrt{a} - x_{n+1}|}{|\sqrt{a} - x_n|^3}$$
(2)

where $x_n = g^n(x_0)$ and x_0 is chosen close enough to \sqrt{a} so that $x_n \to \sqrt{a}$. Hint: use formulas (1) and (2) directly and *not* the third derivative.

- 2. Let $f(x) = \cos(x) + \sin^2(50x)$.
 - (a) Write a computer program to implement Newton's method for f.
 - (b) By doing numerical experiments, find out how close to the root $p = \pi/2$ an initial point x_0 needs to be in order to have the Newton iterates x_n converge to $p = \pi/2$.
 - (c) Explain your results.
- 3. Let

$$G(x,y) = \left(\frac{.25}{1+(x+y)^2}, \frac{.25}{1+(x-y)^2}\right).$$

Find a convex region B with $G(B) \subset B$ and $||DG||_{\infty} \leq k < 1$ for some k for all $(x, y) \in B$. Conclude then that G has a unique fixed point in B.

4. Let $f(x) = \log(x)$, $x_0 = 1$, $x_1 = 1.75$, $x_2 = 2$. Find the *total* error bound for the degree two interpolating polynomial $P_2(x)$ with these nodes and f on the interval [1, 2], *i.e.* find a K with

$$\max_{t \in [1,2]} |f(t) - P_2(t)| \le K.$$