HW3 - Due Friday, February 17, start of class
 No electronic submissions, only hard copy Be sure to justify all your answers completely.

1. For $a=x_{0}<x_{1}<\cdots<x_{n}=b$ and a function $f \in C[a, b]$, show that the intepolation problem has a unique solution,

$$
Q(x)=\sum_{j=0}^{n} c_{j} e^{j x}
$$

with $Q\left(x_{i}\right)=f\left(y_{i}\right)$ for all i. Hint: reduce to a usual polynomial interpolation problem.
2. Consider the inner product on $C[1,2]$,

$$
\langle f, g\rangle=\int_{1}^{2} f(x) g(x) e^{-x} d x
$$

(a) Starting with the basis $\left\{1, x, x^{2}\right\}$ for $\mathcal{P}_{2}[1,2]$ use Gram-Schmidt to determine the first three orthonormal polynomials on $[1,2]$ with respect to the inner product.
(b) Find the order 2 (i.e. quadratic) best least squares approximation for $f(x)=e^{x}$ on $[1,2]$ with respect to the given inner product.
3. Let $f(x)=1 /\left(1+x^{2}\right)$ on $[-5,5]$.
(a) Write a program which uses Newton divided differences to find the interpolating polynomial p to f with respect to $n=10$ uniformly spaced nodes.
(b) Evaluate $p(.4835)$ and compute the absolute error $|p(.4835)-f(.4835)|$.
4. If $f \in C^{2 n+2}[a, b]$ and x_{0}, \ldots, x_{n} are distinct points in $[a, b]$ and $H_{2 n+1}$ is the corresponding Hermite polynomial, show that for $t \in[a, b]$

$$
f(t)=H_{2 n+1}(t)+\frac{\left(t-x_{0}\right)^{2} \ldots\left(t-x_{n}\right)^{2}}{(2 n+2)!} f^{(2 n+2)}(\eta)
$$

for some $\eta \in[a, b]$. Hint: imitate the proof of the corresponding result for the Lagrange polynomial using $E(x)=f(x)-H_{2 n+1}(x), w(x)=\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)$, and

$$
G(x)=E(x)-\frac{w(x)^{2}}{w(t)^{2}} E(t)
$$

5. Fix n. For the basic Lagrange polynomials for $k=0, \ldots, n$

$$
L_{k}(x)=\prod_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

show that for all x

$$
\sum_{j=0}^{n} L_{j}(x)=1
$$

Hint: don't do brute force algebra.

