HW5 - Due Friday, March 24, start of class
 No electronic submissions, only hard copy Be sure to justify all your answers completely.

1. (10 points) Numerically compute

$$
\int_{-1}^{1} \cos (2 x+1 / 2) d x
$$

using (a) the composite trapezoid rule, (b) the composite Simpson's rule, and (c) Gaussian Quadrature. In each case first use the error estimates given in class to find how large n needs to be to ensure that the error in your computation is less than 10^{-5}. Then perform the computation for that n and confirm that your answer is within the estimated error.
For Gaussian Quadrature you can find a list of coefficients and nodes at https://pomax.github.io/bezierinfo/legendre-gauss.html. You can use a computer to compute the error estimates for Gaussian Quadrature.
2. Let $T(a, b)$ and $T(a,(a+b) / 2)+T((a+b) / 2, b)$ be single and double applications of the Trapezoid rule to $\int_{a}^{b} f(x) d x$. Derive the approximate relation between

$$
|T(a, b)-(T(a,(a+b) / 2)+T((a+b) / 2, b))|
$$

and

$$
\left|\int_{a}^{b} f(x) d x-(T(a,(a+b) / 2)+T((a+b) / 2, b))\right|
$$

used in adaptive Trapezoid quadrature.
3. Let $h=(b-a) / 3, x_{0}=a, x_{1}=a+h$, and $x_{2}=b$. Find the degree of precision of the quadrature formula

$$
\int_{a}^{b} f(x) d x \approx \frac{9}{4} h f\left(x_{1}\right)+\frac{3}{4} h f\left(x_{2}\right)
$$

4. Derive the error term in Simpson's rule by assuming that

$$
\int_{a}^{b} f(x) d x=\frac{b-a}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right)+k f^{(4)}(\eta)
$$

and finding k by using the formula for $f(x)=x^{4}$.

