Numerical Linear Algebra – Fall 2014 – Practise Exam Do 4 (four) problems

- 1. (a) Define the spectral radius $\rho(A)$ for a square matrix A.
 - (b) Prove that $\rho(A^k) = \rho(A)^k$ for k > 0.
 - (c) Prove that $\rho(A) \leq ||A||$ for any induced matrix norm on A.
 - (d) For any induced norm, $||A^k|| \to 0$ as $k \to \infty$ if and only if $\rho(A) < 1$.
- 2. Prove that a normal triangular matrix is diagonal.
- 3. Assume $A \in \mathbb{R}^{m,m}$
 - (a) Prove that $\langle x, y \rangle_A = x^* A y$ is an inner product on \mathbb{R}^m if and only if A is symmetric and positive definite
 - (b) Assume now that A is symmetric and positive definite. If x_* is the solution to Ax = b and $\{p_1, \ldots, p_m\}$ is an orthonormal basis for \mathbb{R}^m with respect to \langle , \rangle_A and $x_* = \sum c_i p_i$, give a formula for the c_i .
- 4. (a) If both A and U are in $\mathbb{C}^{m,m}$ and U is unitary, prove that $||UA||_2 = ||A||_2$ and $||UA||_F = ||A||_F$
 - (b) Prove that $||A||_2 = (\rho(A^*A))^{1/2} = \sigma_1$, where σ_1 is the largest singular values of A.
- 5. (a) Prove or disprove: If $A = QBQ^*$ with Q unitary, then A and B have the same singular values
 - (b) Prove or disprove: If $A = CBC^{-1}$, then A and B have the same singular values