> Numerical Linear Algebra - Fall 2014 - Practise Exam
> Do 4 (four) problems

1. (a) Define the spectral radius $\rho(A)$ for a square matrix A.
(b) Prove that $\rho\left(A^{k}\right)=\rho(A)^{k}$ for $k>0$.
(c) Prove that $\rho(A) \leq\|A\|$ for any induced matrix norm on A.
(d) For any induced norm, $\left\|A^{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$ if and only if $\rho(A)<1$.
2. Prove that a normal triangular matrix is diagonal.
3. Assume $A \in \mathbb{R}^{m, m}$
(a) Prove that $\langle x, y\rangle_{A}=x^{*} A y$ is an inner product on \mathbb{R}^{m} if and only if A is symmetric and positive definite
(b) Assume now that A is symmetric and positive definite. If x_{*} is the solution to $A x=b$ and $\left\{p_{1}, \ldots, p_{m}\right\}$ is an orthonormal basis for \mathbb{R}^{m} with respect to \langle,\rangle_{A} and $x_{*}=\sum c_{i} p_{i}$, give a formula for the c_{i}.
4. (a) If both A and U are in $\mathbb{C}^{m, m}$ and U is unitary, prove that $\|U A\|_{2}=\|A\|_{2}$ and $\|U A\|_{F}=\|A\|_{F}$
(b) Prove that $\|A\|_{2}=\left(\rho\left(A^{*} A\right)\right)^{1 / 2}=\sigma_{1}$, where σ_{1} is the largest singular values of A.
5. (a) Prove or disprove: If $A=Q B Q^{*}$ with Q unitary, then A and B have the same singular values
(b) Prove or disprove: If $A=C B C^{-1}$, then A and B have the same singular values
