
These are additional problems to practise for the Numerical Linear Algebra Exam. Note
that many of them are much easier than an exam problem and are the kind of things one
would need to prove on the way to the solution of a larger problem.

1. (a) Define the spectral radius ρ(A) for a square matrix A.

(b) Prove that ρ(Ak) = ρ(A)k for k > 0.

(c) If A is invertible, prove that ρ(A−1) = 1/|λmin|, where |λmin| = min{|λ| : λ ∈
Λ(A)}.

(d) Prove that ρ(A) ≤ ‖A‖ for any induced matrix norm on A.

(e) Prove that ρ(A) is not a matrix norm.

2. If A ∈ Cm,n with m ≥ n, prove that A∗A is invertible if and only if rank(A) = n.

3. If A ∈ Rm,n with m ≥ n, rank(A) = n and b ∈ Rn.

(a) Define the least squares solution to Ax = b.

(b) Derive the normal equations for the least squares problem.

(c) Prove that the unique solution to the least squares problem is (ATA)−1AT b.

(d) Describe how to solve the least squares problem using the QR decomposition of
A.

4. Define a normal matrix and prove that the following are equivalent.

(a) A is normal

(b) ‖Ax‖2 = ‖A∗x‖2 for every x.

(c) A is unitarily diagonalizable.

5. Prove that a normal triangular matrix is diagonal.

6. Assume A ∈ Rm,m

(a) Prove that 〈x, y〉A = x∗Ay is an inner product on Rm if and only if A is symmetric
and positive definite

(b) Assume now that A is symmetric and positive definite. If x∗ is the solution to
Ax = b and {p1, . . . , pm} is an orthonormal basis for Rm with respect to 〈 , 〉A
and x∗ =

∑
cipi, give a formula for the ci.

7. If κ2(A) is the condition number of the square, non-singular A with respect to the
two-norm, prove that

κ2(A) =
σ1
σm

.

where σ1 and σm are the largest and smallest singular values of A, respectively.
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8. If both A and U are in Cm,m and U is unitary, prove that ‖UA‖2 = ‖A‖2 and ‖UA‖F =
‖A‖F

9. Prove that ‖A‖2 = (ρ(A∗A))1/2 = σ1, where σ1 is the largest singular values of A.

10. If A is Hermitian, postive definite prove that its singular values are the same as it
eigenvalues.

11. Compute det(λI − ww∗) when λ ∈ C, I is the m×m identity matrix and w ∈ Cm.

12. If P is a projector, prove that null(P ) ∩ range(P ) = ∅.

13. If q1, . . . qn is an orthonornal basis for the subspace V ⊂ Cm with m > n, prove that
the orthognal projector onto V is QQ∗, where Q is the matrix whose columns are the
qj.

14. Let D ∈ Rm,m be a diagonal matrix with all distinct entries dj on the diagonal and
w ∈ Rm, prove that the eigenvalues of A = D + ww∗ are the roots of the equation

f(λ) = 1 +
m∑
j=1

w2
j

dj − λ

15. Given Cholesky decomposition of the of Hermition positive definite matrix A = R∗R,
prove that ‖R‖2 = ‖R∗‖2 = ‖A‖1/22 .

16. For A ∈ Rm,m and symmetric, define its Rayleigh quotient R(x) and show that when
λ is an eigenvalue of A with eigenvector v, then R(v) = λ and ∇R(v) = 0.

17. Assume that T is tridiagonal and symmetric wiith the diagonal entries given by aj for
j = 1, . . . ,m and the super- and sub-diagonal entries by bj for j = 1 . . .m− 1. Let pk
be the characteristic polynomial of the k × k matrix in the upper left hand corner of
A. Prove that

pk(x) = (ak − x)pk−1(x)− b2k−1pk−2(x).

18. Recall that Arnoldi iteration computes the Hessenberg decomposition A = QHQ∗

sequentially by columns.

(a) If these first n columns of Q are q1, . . . , qn, show that

Aqn = h1,nq1 + . . . hn,nqn + hn+1,nqn+1.

(b) Now assume that the Arnoldi iteration starts with q1 = b/‖b‖2. If the iteration
doesn’t terminate, show that 〈q1, q2, . . . , qn〉 = 〈b, Ab, . . . , An−1b〉.

19. Prove that every square matrix A has a Schur factorization.
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20. Assume that A is real and symmetric. Here is the shifted QR algorithm:

A(0) = A

for k = [1 : n]

Pick shift µ(k)

Q(k)R(k) = A(k−1) − µ(k)I

A(k) = R(k)Q(k) + µ(k)I

end

Let Qk = Q(1) . . . Q(k) and Rk = Q(k) . . . Q(1). Show that A(k) = QT
kAQk and

(A− µ(k)I)(A− µ(k−1)I) . . . (A− µ(1)I) = QkRk.
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