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Positive (commutative) polynomials
A classical warm-up

Let x = (x1, . . . , xd) be commuting variables. A polynomial

f ∈ R[x ] is positive if p(α) ≥ 0 for all α ∈ Rd .

Obvious examples: sums of squares (SOS)

p2
1 + · · ·+ p2

`

for pi ∈ R[x ].

Gauss1800: a positive univariate polynomial is a SOS.



Hilbert’s 17th problem
Is every positive polynomial a SOS?

Hilbert1888: not true for d > 1.

Motzkin65: x4
1x

2
2 + x2

1x
4
2 + 1− 3x2

1x
2
2

is positive but not SOS.

Theorem (Artin 27; affirmative solution of H17)

A polynomial f is positive if and only if p2 · f = s for some

p, s ∈ R[x ] where s is SOS.

Back to Motzkin: (x2
1 + x2

2 )(x4
1x

2
2 + x2

1x
4
2 + 1− 3x2

1x
2
2 )

= (x2
1x

2
2 (x2

1 + x2
2 + 1) + 1)(x2

1 + x2
2 − 2)2

H17 was a breakthrough for real algebraic geometry.
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Real algebraic geometry
Positivity when subject to constraints

RAG studies sets in Rd constrained by polynomial inequalities. To

a set of constraints C ⊂ R[x ] we assign

KC = {α ∈ Rd : c(α) ≥ 0 for all c ∈ C}

which is called a (basic closed) semialgebraic set if C is finite.

Polynomials that are obviously positive on KC :

s0 + s1c1 + · · ·+ s`c`, ci ∈ C , si ∈ SOS.

The set of such polynomials is called the quadratic module, QC .

Alternative description of QC : the smallest subset in R[x ]

containing C such that

1 ∈ QC , QC + QC ⊆ QC , p2 ·QC ⊆ QC for p ∈ R[x ].
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Putinar’s Positivstellensatz
Probably the most used result from RAG

A quadratic module QC is Archimedean if there is ρ > 0 such that

ρ− x2
i ∈ QC for i = 1, . . . , d .

If QC is Archimedean, then KC is bounded; if KC is bounded, then we

can add a constraint to C to get an Archimeden quadratic module

without changing KC .

Theorem (Putinar93)

Suppose QC is Archimedean. Then f ≥ 0 on KC if and only if

f + ε ∈ QC for every ε > 0.

Warning: f + ε ∈ QC for every ε > 0 does not imply f ∈ QC .
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Polynomial optimization
Plenty of packages in Matlab and Mathematica

Let f ∈ R[x ] and C = {c1, . . . , c`} ⊂ R[x ]. Suppose QC is

Archimedean (KC is bounded).

Optimization problem: find µ∗ = max{f (α) : α ∈ KC}.

Equivalently, find µ∗ = min{µ : µ− f ≥ 0 on KC}.

Putinar: µ∗ = inf{µ : µ− f ∈ QC}.

Relax: for n ∈ N, find

µn = inf{µ : µ− f = s0 + s1c1 + · · ·+ s`c`, si SOS of deg ≤ 2n}.

Then µn ↘ µ∗, and µn can be efficiently computed using

semidefinite programming. (a generalization of linear programming)

Mantra: checking positivity is a priori hard (geometry), checking

for SOS is easy (algebra).
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Noncommutative positivity

commutative noncommutative

numbers bounded operators on Hilbert spaces

reals self-adjoint operators

≥ 0 � 0, positive semidefinite

a2 AA∗

Let x = (x1, . . . , xd) be free (noncommuting) variables.

Elements of the free algebra R<x> are free polynomials, e.g.

3x1x
2
2x1x

2
2x1 − x2x

4
1x2 + x1x2 + x2x1 − 2.

There is a natural involution ∗ on R<x> that fixes xj :

(xi1xi2 · · · xi`)∗ = xi` · · · xi2xi1 .
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Three settings to consider

Free polynomials can be evaluated on tuples of operators on a

Hilbert space. If f = x2x
4
1x2 + x1x2 + x2x1 − 2 and X ∈ B(H)2,

f (X ) = X2X
4
1 X2 + X1X2 + X2X1 − 2I ∈ B(H).

Note: if f = f ∗ and X is a tuple of self-adjoint operators, then

f (X ) is self-adjoint.

We consider noncommutative analogs of global positivity (H17)

and bounded positivity (Putinar) in three settings:

(i) positivity on Sn(R)d for a fixed n

(ii) positivity on Sn(R)d for all n

(iii) positivity on S(H)d , for a separable ∞-dim Hilbert space H

Sn(R) real symmetric n×n matrices, S(H) self-adjoint bounded operators



Example

Let g be the bivariate nc polynomial

2x2x
3
1x2−x2x1x2x

2
1−x2

1x2x1x2−x1x2x
2
1x2−x2x

2
1x2x1+x1x

2
2x

2
1 +x2

1x
2
2x1

and let f (x1, x2) := g(x2
1 , x2).

So f = f ∗ ∈ R<x>, and we can talk about positivity of f .

Then

I f (X1,X2) is positive semidefinite for every 2× 2 symmetric

matrices X1 and X2,

I f (Y1,Y2) has a negative eigenvalue for

Y1 =
(

2 0 0
0 1 0
0 0 0

)
, Y2 =

(
0 2 1
2 0 1
1 1 2

)
.

Thus f � 0 on S2(R)2 (and S1(R)2 = R2), but f 6� 0 on S3(R)2.
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Who cares?
Sponsorship

I matrix inequalities in control theory

I free analysis

I polynomial optimization: noncommutative relaxations

I operator algebras and systems

I quantum information theory

I monotonicity (James) and convexity (Scott)

Background: courtesy of Bill Helton



NC semialgebraic sets and quadratic modules

Sums of hermitian squares (SOHS):

p1p
∗
1 + · · ·+ p`p

∗
` , pi ∈ R<x> .

To a subset of self-adjoint polynomials C ⊂ R<x> we assign

KC (n) = {X ∈ Sn(R)d : c(X ) � 0 for all c ∈ C}

Kfin
C =

⋃
n∈N
KC (n)

K∞C = {X ∈ S(H)d : c(X ) � 0 for all c ∈ C}.

The quadratic module QC generated by C in R<x>:∑
i ,j

pijcip
∗
ij , ci ∈ C ∪ {1}, pij ∈ R<x>

That is, QC is the smallest subset of R<x> containing C such that

1 ∈ QC , QC + QC ⊆ QC , p ·QC · p∗ ⊆ QC for p ∈ R<x> .
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Dimension-free results for free polynomials
Global positivity

Theorem (McCullough01, Helton02)

Let f = f ∗ ∈ R<x>. Then f (X ) � 0 for all X ∈ Sn(R)d and

n ∈ N if and only if f is SOHS.

No denominators (cf. the classical H17) are needed!

Typical for dimension-free setting: you ask for more, you get more.

Given f , it actually suffices to check f � 0 on Sn(R)d for a large

enough n (depending on d and deg f ).



Dimension-free results for free polynomials
Bounded positivity

QC Archimedean: ρ− x2
i ∈ QC for some ρ > 0.

Theorem (Helton–McCullough04)

If QC is Archimedean, then f � 0 on K∞C
if and only if f + ε ∈ QC for every ε > 0.

In general, Kfin
C does not suffice (take constraints determining a universal

C∗-algebra without finite-dim representations, e.g. Cuntz algebra)

Theorem (Helton–Klep–McCullough12)

If QC is Archimedean and Kfin
C is convex, then f � 0 on Kfin

C

if and only if f ∈ QC .

No ε as in the classical Putinar is needed!

Didn’t explain convexity... for later, C = {1− x2
1 , . . . , 1− x2

d}
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Free polynomials, but fixed dimension
Procesi–Schacher conjecture

Conjecture (Procesi–Schacher76)

Fix n, and let f = f ∗ ∈ R<x>. Then f (X ) � 0 for all X ∈ Sn(R)d

if and only if

pfp∗ = s + p0

where p, s, p0 ∈ R<x>, s is a SOHS and p0 vanishes on Sn(R)d .

Artin27 (classical): true for n = 1

Procesi–Schacher76: true for n = 2

Klep–Špenko–V18: false for n = 3 example of deg = 15

Educated guess: false for most n. Less sure for powers of 2; n = 4?
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Free polynomials, but fixed dimension
Bounded case is still nice

Theorem (Klep–Špenko–V18)

Fix n, f = f ∗ ∈ R<x> and C ⊂ R<x>. If QC is Archimedean,

then f � 0 on KC (n) if and only if for every ε > 0,

f + ε− p0 ∈ QC

for some p0 ∈ R<x> vanishing on Sn(R)d .



Trace polynomials

Pure trace polynomials, T, are polynomials in trace symbols tr(w)

for words w in x , subject to the usual trace relations:

tr(xi1xi2 · · · xi`) = tr(xi2 · · · xi`xi1), tr(w∗) = tr(w).

So T is a polynomial ring in countably many generators tr(w),

which are equivalence classes of words w.r.t. the “dihedral” action.

Trace polynomials: T<x> = T⊗ R<x>.

tr(x2
1x2x1x2)− tr(x2

1x2) tr(x2) ∈ T,

tr(x1)x1x2x1 − tr(x2
1x2) tr(x1) tr(x2)x2

2 + 2 tr(x4
1 ) ∈ T<x>.



Trace polynomials continued

Originated in invariant theory.

Procesi76: every polynomial function f : Mn(R)d → Mn(R) that is

equivariant under simultaneous basis change,

f (PXP−1) = Pf (X )P−1, is given by a trace polynomial.

Tracial inequalities and optimization of trace polynomials are also

of interest in quantum information theory and free probability.

We evaluate trace polynomials on tracial von Neumann algebras:

pairs of a von Neumann algebra F (w.o.t.-closed unital ∗-subalgebra of

bounded operators) and a faithful normal trace τ on F .

E.g. Mn(R) with the normalized trace tr(A) = 1
n

∑n
i=1 Aii .
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Traces and positivity
traces of squares

(Sums of) hermitian squares and their traces (SOHST):

tr(p1p
∗
1) · · · tr(p`p

∗
` )p0p

∗
0 , pi ∈ T<x> .

To C ⊂ T<x> we assign KC (n) and Kfin
C as before; let Kvna

C be

the tuples satisfying the constraints C from all tracial von

Neumann algebras.

The cyclic quadratic module QC is the smallest subset of T<x>
containing C such that

1 ∈ QC , QC + QC ⊆ QC , p ·QC · p∗ ⊆ QC for p ∈ T<x>

and

tr(QC ) ⊆ QC .
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Trace polynomials, fixed dimension

Theorem (Procesi–Schacher76)

Fix n, and let f = f ∗ ∈ T<x>. Then f (X ) � 0 for all X ∈ Sn(R)d

if and only if

pfp∗ = s + p0

where p, s, p0 ∈ T<x>, s is a SOHST and p0 vanishes on Sn(R)d .

Theorem (Klep–Špenko–V18)

Fix n, f = f ∗ ∈ T<x> and C ⊂ T<x>. If QC is Archimedean,

then f � 0 on KC (n) if and only if for every ε > 0,

f + ε− p0 ∈ QC

for some p0 ∈ T<x> vanishing on Sn(R)d .
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What about the dimension-free setting?

The Connes76 embedding conjecture for von Neumann algebras

(Kirchberg’s conjecture for tensor products of C∗-alg, Tsirelson’s problem in QIT)

has been recently refuted using complexity theory

(Ji–Natarajan–Vidick–Wright–Yuen20).

Theorem (Klep–Schweighofer08)

Let d ≥ 2 and C = {1− x2
1 , . . . , 1− x2

d}. The failure of CEC is

equivalent to the existence of f ∈ R<x> such that

I tr(f (X )) ≥ 0 for all X ∈ Kfin
C ;

I tr(f (Y )) < 0 for some Y ∈ Kvna
C .

Conclusion: a quadratic module certificate can only work in the

∞-dimensional setting (even convex Kfin
C doesn’t help).



The bounded setting and von Neumann algebras

Theorem (Klep–Magron–V20)

Let f ∈ T and let QC ⊂ T<x> be Archimedean. Then f � 0 on

Kvna
C if and only if f + ε ∈ QC for every ε > 0.

This version fails for f ∈ T<x>.

E.g. take f = x1 and C = {1− x2
1} ∪ {tr(x1pp∗) : p ∈ R<x>}.

Not sure about |C | <∞?

Theorem (Klep–Magron–V20)

Let f ∈ T<x> and let QC ⊂ T<x> be Archimedean. Then f � 0

on Kvna
C if and only if for every ε > 0,

there are univariate sums of squares s1, s2 ∈ R[t] such that

f = s1(f )− s2(f ) and ε− tr(s2(f )) ∈ QC .
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Global trace positivity?

Open questions for f ∈ T<x>:

(i) Is f � 0 on Kfin
∅ equivalent to f � 0 on Kvna

∅ ?

(ii) Can at least the second one be certified using SOHST in

some way?

(iii) If not, what is missing?

Resolved in case d = 1, i.e., T<x> = R[x , tr(x), tr(x2), . . . ]

Theorem (Klep–Pascoe–V20)

Let d = 1 and f ∈ T<x>. Then f (X ) � 0 for all X ∈ Sn(R) and

n ∈ N if and only if p2 · f = s where p, s ∈ T<x> and s is SOHST.
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Summary

Free polynomials, R<x>

global bounded

fixed n X/×/? 1 X

all n X ×/X 2

∞ X X

Trace polynomials, T<x>

global bounded

fixed n X X

all n ? 3 × 4

∞ ? X

1: X for n = 1, 2; × for n = 3; powers of two?
2: X when convex; × in general
3: X for d = 1

4: (CEC) would be nice to have an explicit example

Thank you!
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