Positivity of polynomials in matrix and operator variables

Jurij Volčič

Texas A\&M University
University of Florida, October 2020

Positive (commutative) polynomials

A classical warm-up

Let $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ be commuting variables. A polynomial $f \in \mathbb{R}[\underline{x}]$ is positive if $p(\underline{\alpha}) \geq 0$ for all $\alpha \in \mathbb{R}^{d}$.

Obvious examples: sums of squares (SOS)

$$
p_{1}^{2}+\cdots+p_{\ell}^{2}
$$

for $p_{i} \in \mathbb{R}[\underline{x}]$.
Gauss ${ }^{1800}$: a positive univariate polynomial is a SOS.

Hilbert's 17th problem

Is every positive polynomial a SOS?

Hilbert ${ }^{1888}$: not true for $d>1$.
Motzkin ${ }^{65}: x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}+1-3 x_{1}^{2} x_{2}^{2}$
is positive but not SOS.

Hilbert's 17th problem

Is every positive polynomial a SOS?

Hilbert ${ }^{1888}$: not true for $d>1$.
Motzkin ${ }^{65}: x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}+1-3 x_{1}^{2} x_{2}^{2}$
is positive but not SOS.
Theorem (Artin 27; affirmative solution of H17)
A polynomial f is positive if and only if $p^{2} \cdot f=s$ for some $p, s \in \mathbb{R}[\underline{x}]$ where s is $S O S$.

Back to Motzkin:

$$
\begin{aligned}
& \left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}+1-3 x_{1}^{2} x_{2}^{2}\right) \\
= & \left(x_{1}^{2} x_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}+1\right)+1\right)\left(x_{1}^{2}+x_{2}^{2}-2\right)^{2}
\end{aligned}
$$

H17 was a breakthrough for real algebraic geometry.

Real algebraic geometry

Positivity when subject to constraints
RAG studies sets in \mathbb{R}^{d} constrained by polynomial inequalities. To a set of constraints $C \subset \mathbb{R}[\underline{x}]$ we assign

$$
\mathcal{K}_{C}=\left\{\underline{\alpha} \in \mathbb{R}^{d}: c(\underline{\alpha}) \geq 0 \text { for all } c \in C\right\}
$$

which is called a (basic closed) semialgebraic set if C is finite.

Real algebraic geometry

Positivity when subject to constraints
RAG studies sets in \mathbb{R}^{d} constrained by polynomial inequalities. To a set of constraints $C \subset \mathbb{R}[\underline{x}]$ we assign

$$
\mathcal{K}_{C}=\left\{\underline{\alpha} \in \mathbb{R}^{d}: c(\underline{\alpha}) \geq 0 \text { for all } c \in C\right\}
$$

which is called a (basic closed) semialgebraic set if C is finite.
Polynomials that are obviously positive on \mathcal{K}_{C} :

$$
s_{0}+s_{1} c_{1}+\cdots+s_{\ell} c_{\ell}, \quad c_{i} \in C, s_{i} \in \mathrm{SOS}
$$

The set of such polynomials is called the quadratic module, \mathbf{Q}_{C}.
Alternative description of \mathbf{Q}_{C} : the smallest subset in $\mathbb{R}[\underline{x}]$ containing C such that

$$
1 \in \mathbf{Q}_{C}, \quad \mathbf{Q}_{C}+\mathbf{Q}_{C} \subseteq \mathbf{Q}_{C}, \quad p^{2} \cdot \mathbf{Q}_{C} \subseteq \mathbf{Q}_{C} \text { for } p \in \mathbb{R}[\underline{x}]
$$

Putinar's Positivstellensatz

Probably the most used result from RAG

A quadratic module \mathbf{Q}_{C} is Archimedean if there is $\rho>0$ such that $\rho-x_{i}^{2} \in \mathbf{Q}_{C}$ for $i=1, \ldots, d$.

If \mathbf{Q}_{C} is Archimedean, then \mathcal{K}_{C} is bounded; if \mathcal{K}_{C} is bounded, then we can add a constraint to C to get an Archimeden quadratic module without changing \mathcal{K}_{C}.

Putinar's Positivstellensatz

Probably the most used result from RAG

A quadratic module \mathbf{Q}_{C} is Archimedean if there is $\rho>0$ such that $\rho-x_{i}^{2} \in \mathbf{Q}_{C}$ for $i=1, \ldots, d$.

If \mathbf{Q}_{C} is Archimedean, then \mathcal{K}_{C} is bounded; if \mathcal{K}_{C} is bounded, then we can add a constraint to C to get an Archimeden quadratic module without changing \mathcal{K}_{C}.

Theorem (Putinar ${ }^{93}$)
Suppose \mathbf{Q}_{C} is Archimedean. Then $f \geq 0$ on \mathcal{K}_{C} if and only if $f+\varepsilon \in \mathbf{Q}_{C}$ for every $\varepsilon>0$.

Warning: $f+\varepsilon \in \mathbf{Q}_{C}$ for every $\varepsilon>0$ does not imply $f \in \mathbf{Q}_{C}$.

Polynomial optimization

Plenty of packages in Matlab and Mathematica
Let $f \in \mathbb{R}[\underline{x}]$ and $C=\left\{c_{1}, \ldots, c_{\ell}\right\} \subset \mathbb{R}[\underline{x}]$. Suppose \mathbf{Q}_{C} is
Archimedean (\mathcal{K}_{C} is bounded).
Optimization problem: find

$$
\mu_{*}=\max \left\{f(\underline{\alpha}): \underline{\alpha} \in \mathcal{K}_{C}\right\} .
$$

Equivalently, find

$$
\mu_{*}=\min \left\{\mu: \mu-f \geq 0 \text { on } \mathcal{K}_{C}\right\} .
$$

Polynomial optimization

Plenty of packages in Matlab and Mathematica
Let $f \in \mathbb{R}[\underline{x}]$ and $C=\left\{c_{1}, \ldots, c_{\ell}\right\} \subset \mathbb{R}[\underline{x}]$. Suppose \mathbf{Q}_{C} is
Archimedean (\mathcal{K}_{C} is bounded).
Optimization problem: find

$$
\mu_{*}=\max \left\{f(\underline{\alpha}): \underline{\alpha} \in \mathcal{K}_{C}\right\} .
$$

Equivalently, find

$$
\begin{array}{r}
\mu_{*}=\min \left\{\mu: \mu-f \geq 0 \text { on } \mathcal{K}_{C}\right\} . \\
\mu_{*}=\inf \left\{\mu: \mu-f \in \mathbf{Q}_{C}\right\} .
\end{array}
$$

Polynomial optimization

Plenty of packages in Matlab and Mathematica
Let $f \in \mathbb{R}[\underline{x}]$ and $C=\left\{c_{1}, \ldots, c_{\ell}\right\} \subset \mathbb{R}[\underline{x}]$. Suppose \mathbf{Q}_{C} is
Archimedean (\mathcal{K}_{C} is bounded).
Optimization problem: find

$$
\mu_{*}=\max \left\{f(\underline{\alpha}): \underline{\alpha} \in \mathcal{K}_{C}\right\} .
$$

Equivalently, find

$$
\begin{array}{r}
\mu_{*}=\min \left\{\mu: \mu-f \geq 0 \text { on } \mathcal{K}_{C}\right\} . \\
\mu_{*}=\inf \left\{\mu: \mu-f \in \mathbf{Q}_{C}\right\} .
\end{array}
$$

Putinar:
Relax: for $n \in \mathbb{N}$, find
$\mu_{n}=\inf \left\{\mu: \mu-f=s_{0}+s_{1} c_{1}+\cdots+s_{\ell} c_{\ell}, \quad s_{i}\right.$ SOS of deg $\left.\leq 2 n\right\}$.
Then $\mu_{n} \searrow \mu_{*}$, and μ_{n} can be efficiently computed using
semidefinite programming.
(a generalization of linear programming)

Polynomial optimization

Plenty of packages in Matlab and Mathematica
Let $f \in \mathbb{R}[\underline{x}]$ and $C=\left\{c_{1}, \ldots, c_{\ell}\right\} \subset \mathbb{R}[\underline{x}]$. Suppose \mathbf{Q}_{C} is
Archimedean (\mathcal{K}_{C} is bounded).
Optimization problem: find

$$
\mu_{*}=\max \left\{f(\underline{\alpha}): \underline{\alpha} \in \mathcal{K}_{C}\right\} .
$$

Equivalently, find

$$
\begin{aligned}
\mu_{*}= & \min \left\{\mu: \mu-f \geq 0 \text { on } \mathcal{K}_{C}\right\} \\
& \mu_{*}=\inf \left\{\mu: \mu-f \in \mathbf{Q}_{C}\right\} .
\end{aligned}
$$

Relax: for $n \in \mathbb{N}$, find
$\mu_{n}=\inf \left\{\mu: \mu-f=s_{0}+s_{1} c_{1}+\cdots+s_{\ell} c_{\ell}, \quad s_{i}\right.$ SOS of deg $\left.\leq 2 n\right\}$.
Then $\mu_{n} \searrow \mu_{*}$, and μ_{n} can be efficiently computed using semidefinite programming.
(a generalization of linear programming)
Mantra: checking positivity is a priori hard (geometry), checking for SOS is easy (algebra).

Noncommutative positivity

commutative	noncommutative
numbers	bounded operators on Hilbert spaces
reals	self-adjoint operators
≥ 0	$\succeq 0$, positive semidefinite
a^{2}	$A A^{*}$

Noncommutative positivity

commutative	noncommutative
numbers	bounded operators on Hilbert spaces
reals	self-adjoint operators
≥ 0	$\succeq 0$, positive semidefinite
a^{2}	$A A^{*}$

Let $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ be free (noncommuting) variables.
Elements of the free algebra $\mathbb{R}<\underline{x}>$ are free polynomials, e.g.

$$
3 x_{1} x_{2}^{2} x_{1} x_{2}^{2} x_{1}-x_{2} x_{1}^{4} x_{2}+x_{1} x_{2}+x_{2} x_{1}-2 .
$$

There is a natural involution $*$ on $\mathbb{R}<\underline{x}>$ that fixes x_{j} :

$$
\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{\ell}}\right)^{*}=x_{i_{\ell}} \cdots x_{i_{2}} x_{i_{1}} .
$$

Three settings to consider

Free polynomials can be evaluated on tuples of operators on a Hilbert space. If $f=x_{2} x_{1}^{4} x_{2}+x_{1} x_{2}+x_{2} x_{1}-2$ and $\underline{X} \in \mathcal{B}(H)^{2}$,

$$
f(\underline{X})=X_{2} X_{1}^{4} X_{2}+X_{1} X_{2}+X_{2} X_{1}-2 I \in \mathcal{B}(H)
$$

Note: if $f=f^{*}$ and \underline{X} is a tuple of self-adjoint operators, then $f(\underline{X})$ is self-adjoint.

We consider noncommutative analogs of global positivity (H17) and bounded positivity (Putinar) in three settings:
(i) positivity on $S_{n}(\mathbb{R})^{d}$ for a fixed n
(ii) positivity on $\mathrm{S}_{n}(\mathbb{R})^{d}$ for all n
(iii) positivity on $S(H)^{d}$, for a separable ∞-dim Hilbert space H
$S_{n}(\mathbb{R})$ real symmetric $n \times n$ matrices, $S(H)$ self-adjoint bounded operators

Example

Let g be the bivariate nc polynomial
$2 x_{2} x_{1}^{3} x_{2}-x_{2} x_{1} x_{2} x_{1}^{2}-x_{1}^{2} x_{2} x_{1} x_{2}-x_{1} x_{2} x_{1}^{2} x_{2}-x_{2} x_{1}^{2} x_{2} x_{1}+x_{1} x_{2}^{2} x_{1}^{2}+x_{1}^{2} x_{2}^{2} x_{1}$
and let $f\left(x_{1}, x_{2}\right):=g\left(x_{1}^{2}, x_{2}\right)$.
So $f=f^{*} \in \mathbb{R}\langle\underline{x}\rangle$, and we can talk about positivity of f.
Then

- $f\left(X_{1}, X_{2}\right)$ is positive semidefinite for every 2×2 symmetric matrices X_{1} and X_{2},
- $f\left(Y_{1}, Y_{2}\right)$ has a negative eigenvalue for

$$
Y_{1}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad Y_{2}=\left(\begin{array}{lll}
0 & 2 & 1 \\
2 & 0 & 1 \\
1 & 1 & 2
\end{array}\right) .
$$

Thus $f \succeq 0$ on $\mathrm{S}_{2}(\mathbb{R})^{2}$ (and $\mathrm{S}_{1}(\mathbb{R})^{2}=\mathbb{R}^{2}$), but $f \nsucceq 0$ on $\mathrm{S}_{3}(\mathbb{R})^{2}$.

Who cares?

Sponsorship

- matrix inequalities in control theory
- free analysis
- polynomial optimization: noncommutative relaxations
- operator algebras and systems LVDT
- quantum information theory
- monotonicity (James) and convexity (Scott)

NC semialgebraic sets and quadratic modules
Sums of hermitian squares (SOHS):

$$
p_{1} p_{1}^{*}+\cdots+p_{\ell} p_{\ell}^{*}, \quad p_{i} \in \mathbb{R}<\underline{x}>.
$$

To a subset of self-adjoint polynomials $C \subset \mathbb{R}\langle\underline{x}\rangle$ we assign

$$
\begin{aligned}
\mathcal{K}_{C}(n) & =\left\{\underline{X} \in S_{n}(\mathbb{R})^{d}: c(\underline{X}) \succeq 0 \text { for all } c \in C\right\} \\
\mathcal{K}_{C}^{\text {fin }} & =\bigcup_{n \in \mathbb{N}} \mathcal{K}_{C}(n) \\
\mathcal{K}_{C}^{\infty} & =\left\{\underline{X} \in \mathrm{~S}(H)^{d}: c(\underline{X}) \succeq 0 \text { for all } c \in C\right\} .
\end{aligned}
$$

NC semialgebraic sets and quadratic modules

Sums of hermitian squares (SOHS):

$$
p_{1} p_{1}^{*}+\cdots+p_{\ell} p_{\ell}^{*}, \quad p_{i} \in \mathbb{R}<\underline{x}>.
$$

To a subset of self-adjoint polynomials $C \subset \mathbb{R}<\underline{x}>$ we assign

$$
\begin{aligned}
\mathcal{K}_{C}(n) & =\left\{\underline{X} \in S_{n}(\mathbb{R})^{d}: c(\underline{X}) \succeq 0 \text { for all } c \in C\right\} \\
\mathcal{K}_{C}^{\text {fin }} & =\bigcup_{n \in \mathbb{N}} \mathcal{K}_{C}(n) \\
\mathcal{K}_{C}^{\infty} & =\left\{\underline{X} \in S(H)^{d}: c(\underline{X}) \succeq 0 \text { for all } c \in C\right\} .
\end{aligned}
$$

The quadratic module \mathbf{Q}_{C} generated by C in $\mathbb{R}\langle\underline{x}\rangle$:

$$
\sum_{i, j} p_{i j} c_{i} p_{i j}^{*}, \quad c_{i} \in C \cup\{1\}, p_{i j} \in \mathbb{R}<\underline{x}>
$$

That is, \mathbf{Q}_{C} is the smallest subset of $\mathbb{R}<\underline{x}>$ containing C such that

$$
1 \in \mathbf{Q}_{C}, \quad \mathbf{Q}_{C}+\mathbf{Q}_{C} \subseteq \mathbf{Q}_{C}, \quad p \cdot \mathbf{Q}_{C} \cdot p^{*} \subseteq \mathbf{Q}_{C} \text { for } p \in \mathbb{R}<\underline{x}>
$$

Dimension-free results for free polynomials

Global positivity

Theorem (McCullough ${ }^{01}$, Helton ${ }^{02}$)
Let $f=f^{*} \in \mathbb{R}<\underline{x}>$. Then $f(\underline{X}) \succeq 0$ for all $\underline{X} \in \mathrm{~S}_{n}(\mathbb{R})^{d}$ and $n \in \mathbb{N}$ if and only if f is SOHS.

No denominators (cf. the classical H17) are needed!
Typical for dimension-free setting: you ask for more, you get more.
Given f, it actually suffices to check $f \succeq 0$ on $S_{n}(\mathbb{R})^{d}$ for a large enough n (depending on d and $\operatorname{deg} f$).

Dimension-free results for free polynomials

Bounded positivity

$$
\mathbf{Q}_{C} \text { Archimedean: } \rho-x_{i}^{2} \in \mathbf{Q}_{C} \text { for some } \rho>0
$$

Theorem (Helton-McCullough ${ }^{04}$)
If \mathbf{Q}_{C} is Archimedean, then $f \succeq 0$ on \mathcal{K}_{C}^{∞}
if and only if $f+\varepsilon \in \mathbf{Q}_{C}$ for every $\varepsilon>0$.
In general, $\mathcal{K}_{C}^{\text {fin }}$ does not suffice (take constraints determining a universal
C^{*}-algebra without finite-dim representations, e.g. Cuntz algebra)

Dimension-free results for free polynomials

Bounded positivity

$$
\mathbf{Q}_{C} \text { Archimedean: } \rho-x_{i}^{2} \in \mathbf{Q}_{C} \text { for some } \rho>0
$$

Theorem (Helton-McCullough ${ }^{04}$)
If \mathbf{Q}_{C} is Archimedean, then $f \succeq 0$ on \mathcal{K}_{C}^{∞}
if and only if $f+\varepsilon \in \mathbf{Q}_{C}$ for every $\varepsilon>0$.
In general, $\mathcal{K}_{C}^{\text {fin }}$ does not suffice (take constraints determining a universal
C^{*}-algebra without finite-dim representations, e.g. Cuntz algebra)

Theorem (Helton-Klep-McCullough ${ }^{12}$)
If \mathbf{Q}_{C} is Archimedean and $\mathcal{K}_{C}^{\text {fin }}$ is convex, then $f \succeq 0$ on $\mathcal{K}_{C}^{\text {fin }}$ if and only if $f \in \mathbf{Q}_{C}$.

No ε as in the classical Putinar is needed!
Didn't explain convexity... for later, $C=\left\{1-x_{1}^{2}, \ldots, 1-x_{d}^{2}\right\}$

Free polynomials, but fixed dimension

Procesi-Schacher conjecture

Conjecture (Procesi-Schacher ${ }^{76}$)
Fix n, and let $f=f^{*} \in \mathbb{R}\langle\underline{x}\rangle$. Then $f(\underline{X}) \succeq 0$ for all $\underline{X} \in \mathrm{~S}_{n}(\mathbb{R})^{d}$
if and only if

$$
p f p^{*}=s+p_{0}
$$

where $\left.p, s, p_{0} \in \mathbb{R}<\underline{x}\right\rangle$, s is a SOHS and p_{0} vanishes on $S_{n}(\mathbb{R})^{d}$.

Free polynomials, but fixed dimension

Procesi-Schacher conjecture

Conjecture (Procesi-Schacher ${ }^{76}$)
Fix n, and let $f=f^{*} \in \mathbb{R}\langle\underline{x}\rangle$. Then $f(\underline{X}) \succeq 0$ for all $\underline{X} \in \mathrm{~S}_{n}(\mathbb{R})^{d}$
if and only if

$$
p f p^{*}=s+p_{0}
$$

where $p, s, p_{0} \in \mathbb{R}<\underline{x}>$, s is a SOHS and p_{0} vanishes on $\mathrm{S}_{n}(\mathbb{R})^{d}$.

Artin ${ }^{27}$ (classical): true for $n=1$
Procesi-Schacher ${ }^{76}$: true for $n=2$

Free polynomials, but fixed dimension

Procesi-Schacher conjecture

Conjecture (Procesi-Schacher ${ }^{76}$)
Fix n, and let $f=f^{*} \in \mathbb{R}\left\langle\underline{x}>\right.$. Then $f(\underline{X}) \succeq 0$ for all $\underline{X} \in \mathrm{~S}_{n}(\mathbb{R})^{d}$
if and only if

$$
p f p^{*}=s+p_{0}
$$

where $\left.p, s, p_{0} \in \mathbb{R}<\underline{x}\right\rangle$, s is a SOHS and p_{0} vanishes on $S_{n}(\mathbb{R})^{d}$.

Artin ${ }^{27}$ (classical): true for $n=1$
Procesi-Schacher ${ }^{76}$: true for $n=2$
Klep-Špenko- ${ }^{18}$: false for $n=3$

Educated guess: false for most n. Less sure for powers of $2 ; n=4$?

Free polynomials, but fixed dimension

Bounded case is still nice

Theorem (Klep-Špenko-V ${ }^{18}$)
Fix $n, f=f^{*} \in \mathbb{R}<\underline{x}>$ and $C \subset \mathbb{R}<\underline{x}>$. If \mathbf{Q}_{C} is Archimedean, then $f \succeq 0$ on $\mathcal{K}_{C}(n)$ if and only if for every $\varepsilon>0$,

$$
f+\varepsilon-p_{0} \in \mathbf{Q}_{C}
$$

for some $p_{0} \in \mathbb{R}<\underline{x}>$ vanishing on $S_{n}(\mathbb{R})^{d}$.

Trace polynomials

Pure trace polynomials, \mathbb{T}, are polynomials in trace symbols $\operatorname{tr}(w)$ for words w in \underline{x}, subject to the usual trace relations:

$$
\operatorname{tr}\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{\ell}}\right)=\operatorname{tr}\left(x_{i_{2}} \cdots x_{i_{\ell}} x_{i_{1}}\right), \quad \operatorname{tr}\left(w^{*}\right)=\operatorname{tr}(w) .
$$

So \mathbb{T} is a polynomial ring in countably many generators $\operatorname{tr}(w)$, which are equivalence classes of words w.r.t. the "dihedral" action.

Trace polynomials: $\mathbb{T}\langle\underline{x}>=\mathbb{T} \otimes \mathbb{R}<\underline{x}>$.
$\operatorname{tr}\left(x_{1}^{2} x_{2} x_{1} x_{2}\right)-\operatorname{tr}\left(x_{1}^{2} x_{2}\right) \operatorname{tr}\left(x_{2}\right) \in \mathbb{T}$,
$\operatorname{tr}\left(x_{1}\right) x_{1} x_{2} x_{1}-\operatorname{tr}\left(x_{1}^{2} x_{2}\right) \operatorname{tr}\left(x_{1}\right) \operatorname{tr}\left(x_{2}\right) x_{2}^{2}+2 \operatorname{tr}\left(x_{1}^{4}\right) \in \mathbb{T}<\underline{x}>$.

Trace polynomials continued

Originated in invariant theory.
Procesi ${ }^{76}$: every polynomial function $f: \mathrm{M}_{n}(\mathbb{R})^{d} \rightarrow \mathrm{M}_{n}(\mathbb{R})$ that is equivariant under simultaneous basis change,
$f\left(P \underline{X} P^{-1}\right)=\operatorname{Pf}(\underline{X}) P^{-1}$, is given by a trace polynomial.
Tracial inequalities and optimization of trace polynomials are also of interest in quantum information theory and free probability.

Trace polynomials continued

Originated in invariant theory.
Procesi ${ }^{76}$: every polynomial function $f: M_{n}(\mathbb{R})^{d} \rightarrow M_{n}(\mathbb{R})$ that is equivariant under simultaneous basis change,
$f\left(P \underline{X} P^{-1}\right)=\operatorname{Pf}(\underline{X}) P^{-1}$, is given by a trace polynomial.
Tracial inequalities and optimization of trace polynomials are also of interest in quantum information theory and free probability.

We evaluate trace polynomials on tracial von Neumann algebras: pairs of a von Neumann algebra \mathcal{F} (w.o.t.-closed unital $*$-subalgebra of bounded operators) and a faithful normal trace τ on \mathcal{F}.
E.g. $\mathrm{M}_{n}(\mathbb{R})$ with the normalized $\operatorname{trace} \operatorname{tr}(A)=\frac{1}{n} \sum_{i=1}^{n} A_{i i}$.

Traces and positivity

traces of squares
(Sums of) hermitian squares and their traces (SOHST):

$$
\operatorname{tr}\left(p_{1} p_{1}^{*}\right) \cdots \operatorname{tr}\left(p_{\ell} p_{\ell}^{*}\right) p_{0} p_{0}^{*}, \quad p_{i} \in \mathbb{T}<\underline{x}>.
$$

To $C \subset \mathbb{T}<\underline{x}>$ we assign $\mathcal{K}_{C}(n)$ and $\mathcal{K}_{C}^{\text {fin }}$ as before; let $\mathcal{K}_{C}^{\text {vna }}$ be the tuples satisfying the constraints C from all tracial von Neumann algebras.

Traces and positivity

traces of squares

(Sums of) hermitian squares and their traces (SOHST):

$$
\operatorname{tr}\left(p_{1} p_{1}^{*}\right) \cdots \operatorname{tr}\left(p_{\ell} p_{\ell}^{*}\right) p_{0} p_{0}^{*}, \quad p_{i} \in \mathbb{T}<\underline{x}>
$$

To $C \subset \mathbb{T}<\underline{x}>$ we assign $\mathcal{K}_{C}(n)$ and $\mathcal{K}_{C}^{\text {fin }}$ as before; let $\mathcal{K}_{C}^{\text {vna }}$ be the tuples satisfying the constraints C from all tracial von Neumann algebras.

The cyclic quadratic module \mathbf{Q}_{C} is the smallest subset of $\mathbb{T}<\underline{x}>$ containing C such that

$$
1 \in \mathbf{Q}_{C}, \quad \mathbf{Q}_{C}+\mathbf{Q}_{C} \subseteq \mathbf{Q}_{C}, \quad p \cdot \mathbf{Q}_{C} \cdot p^{*} \subseteq \mathbf{Q}_{C} \text { for } p \in \mathbb{T}<\underline{x}>
$$

and

$$
\operatorname{tr}\left(\mathbf{Q}_{C}\right) \subseteq \mathbf{Q}_{C}
$$

Trace polynomials, fixed dimension

Theorem (Procesi-Schacher ${ }^{76}$)
Fix n, and let $f=f^{*} \in \mathbb{T}<\underline{x}>$. Then $f(\underline{X}) \succeq 0$ for all $\underline{X} \in S_{n}(\mathbb{R})^{d}$ if and only if

$$
p f p^{*}=s+p_{0}
$$

where $p, s, p_{0} \in \mathbb{T}<\underline{x}>$, s is a SOHST and p_{0} vanishes on $S_{n}(\mathbb{R})^{d}$.

Trace polynomials, fixed dimension

Theorem (Procesi-Schacher ${ }^{76}$)
Fix n, and let $f=f^{*} \in \mathbb{T}<\underline{x}>$. Then $f(\underline{X}) \succeq 0$ for all $\underline{X} \in \mathrm{~S}_{n}(\mathbb{R})^{d}$
if and only if

$$
p f p^{*}=s+p_{0}
$$

where $p, s, p_{0} \in \mathbb{T}<\underline{x}>$, s is a SOHST and p_{0} vanishes on $S_{n}(\mathbb{R})^{d}$.

Theorem (Klep-Špenko-V ${ }^{18}$)
Fix $n, f=f^{*} \in \mathbb{T}<\underline{x}>$ and $C \subset \mathbb{T}<\underline{x}>$. If \mathbf{Q}_{C} is Archimedean, then $f \succeq 0$ on $\mathcal{K}_{C}(n)$ if and only if for every $\varepsilon>0$,

$$
f+\varepsilon-p_{0} \in \mathbf{Q}_{C}
$$

for some $p_{0} \in \mathbb{T}<\underline{x}>$ vanishing on $S_{n}(\mathbb{R})^{d}$.

What about the dimension-free setting?

The Connes ${ }^{76}$ embedding conjecture for von Neumann algebras (Kirchberg's conjecture for tensor products of C^{*}-alg, Tsirelson's problem in QIT) has been recently refuted using complexity theory (Ji-Natarajan-Vidick-Wright-Yuen ${ }^{20}$).

Theorem (Klep-Schweighofer ${ }^{08}$)
Let $d \geq 2$ and $C=\left\{1-x_{1}^{2}, \ldots, 1-x_{d}^{2}\right\}$. The failure of CEC is equivalent to the existence of $f \in \mathbb{R}<\underline{x}\rangle$ such that

- $\operatorname{tr}(f(\underline{X})) \geq 0$ for all $\underline{X} \in \mathcal{K}_{C}^{\text {fin }}$;
- $\operatorname{tr}(f(\underline{Y}))<0$ for some $\underline{Y} \in \mathcal{K}_{C}^{\text {vna }}$.

Conclusion: a quadratic module certificate can only work in the ∞-dimensional setting (even convex $\mathcal{K}_{C}^{\text {fin }}$ doesn't help).

The bounded setting and von Neumann algebras

Theorem (Klep-Magron-V ${ }^{20}$)
Let $f \in \mathbb{T}$ and let $\mathbf{Q}_{C} \subset \mathbb{T}<\underline{x}>$ be Archimedean. Then $f \succeq 0$ on $\mathcal{K}_{C}^{\text {vna }}$ if and only if $f+\varepsilon \in \mathbf{Q}_{C}$ for every $\varepsilon>0$.

The bounded setting and von Neumann algebras

Theorem (Klep-Magron- V^{20})
Let $f \in \mathbb{T}$ and let $\mathbf{Q}_{C} \subset \mathbb{T}\langle\underline{x}\rangle$ be Archimedean. Then $f \succeq 0$ on $\mathcal{K}_{C}^{\mathrm{vna}}$ if and only if $f+\varepsilon \in \mathbf{Q}_{C}$ for every $\varepsilon>0$.
This version fails for $f \in \mathbb{T}\langle\underline{x}>$.
E.g. take $f=x_{1}$ and $C=\left\{1-x_{1}^{2}\right\} \cup\left\{\operatorname{tr}\left(x_{1} p p^{*}\right): p \in \mathbb{R}<\underline{x}>\right\}$.

Not sure about $|C|<\infty$?

The bounded setting and von Neumann algebras

Theorem (Klep-Magron-V ${ }^{20}$)
Let $f \in \mathbb{T}$ and let $\mathbf{Q}_{C} \subset \mathbb{T}<\underline{x}>$ be Archimedean. Then $f \succeq 0$ on $\mathcal{K}_{C}^{\text {vna }}$ if and only if $f+\varepsilon \in \mathbf{Q}_{C}$ for every $\varepsilon>0$.
This version fails for $f \in \mathbb{T}\langle\underline{x}>$.
E.g. take $f=x_{1}$ and $C=\left\{1-x_{1}^{2}\right\} \cup\left\{\operatorname{tr}\left(x_{1} p p^{*}\right): p \in \mathbb{R}<\underline{x}>\right\}$.

Not sure about $|C|<\infty$?

Theorem (Klep-Magron- ${ }^{20}$)
Let $f \in \mathbb{T}\langle\underline{x}\rangle$ and let $\mathbf{Q}_{C} \subset \mathbb{T}\langle\underline{x}>$ be Archimedean. Then $f \succeq 0$ on $\mathcal{K}_{C}^{\text {vna }}$ if and only if for every $\varepsilon>0$,
there are univariate sums of squares $s_{1}, s_{2} \in \mathbb{R}[t]$ such that

$$
f=s_{1}(f)-s_{2}(f) \quad \text { and } \quad \varepsilon-\operatorname{tr}\left(s_{2}(f)\right) \in \mathbf{Q}_{C} .
$$

Global trace positivity?

Open questions for $f \in \mathbb{T}<\underline{x}>$:
(i) Is $f \succeq 0$ on $\mathcal{K}_{\emptyset}^{\text {fin }}$ equivalent to $f \succeq 0$ on $\mathcal{K}_{\emptyset}^{\text {vna }}$?
(ii) Can at least the second one be certified using SOHST in some way?
(iii) If not, what is missing?

Global trace positivity?

Open questions for $f \in \mathbb{T}<\underline{x}>$:
(i) Is $f \succeq 0$ on $\mathcal{K}_{\emptyset}^{\text {fin }}$ equivalent to $f \succeq 0$ on $\mathcal{K}_{\emptyset}^{\text {vna }}$?
(ii) Can at least the second one be certified using SOHST in some way?
(iii) If not, what is missing?

Resolved in case $d=1$, i.e., $\mathbb{T}<\underline{x}>=\mathbb{R}\left[x, \operatorname{tr}(x), \operatorname{tr}\left(x^{2}\right), \ldots\right]$
Theorem (Klep-Pascoe-V ${ }^{20}$)
Let $d=1$ and $f \in \mathbb{T}<\underline{x}>$. Then $f(X) \succeq 0$ for all $X \in S_{n}(\mathbb{R})$ and $n \in \mathbb{N}$ if and only if $p^{2} \cdot f=s$ where $p, s \in \mathbb{T}<\underline{x}>$ and s is SOHST.

Summary

Free polynomials, $\mathbb{R}<\underline{x}>$

	global	bounded
fixed n	$\checkmark / \times /$? 1	\checkmark
all n	\checkmark	\times / \checkmark^{2}
∞	\checkmark	\checkmark

Trace polynomials, $\mathbb{T}<\underline{x}>$

	global	bounded
fixed n	\checkmark	\checkmark
all n	$?^{3}$	$\times{ }^{4}$
∞	$?$	\checkmark

${ }^{1}: \checkmark$ for $n=1,2 ; \times$ for $n=3$; powers of two?
${ }^{2}$: \checkmark when convex; x in general
3: \checkmark for $d=1$
${ }^{4}$: (CEC) would be nice to have an explicit example

Summary

Free polynomials, $\mathbb{R}<\underline{x}>$

	global	bounded
fixed n	$\checkmark / \times / ?^{1}$	\checkmark
all n	\checkmark	\times / \checkmark^{2}
∞	\checkmark	\checkmark

Trace polynomials, $\mathbb{T}<\underline{x}>$

	global	bounded
fixed n	\checkmark	\checkmark
all n	$?^{3}$	$\times{ }^{4}$
∞	$?^{3}$	\checkmark

${ }^{1}: \checkmark$ for $n=1,2 ; \times$ for $n=3$; powers of two?
${ }^{2}$: \checkmark when convex; x in general
${ }^{3}$: \checkmark for $d=1$
${ }^{4}$: (CEC) would be nice to have an explicit example

Thank you!

