Positivity of polynomials in matrix and operator variables

Jurij Volčič

Texas A&M University

University of Florida, October 2020

(ロ)、(型)、(E)、(E)、 E) の(()

Positive (commutative) polynomials

A classical warm-up

Let $\underline{x} = (x_1, \dots, x_d)$ be commuting variables. A polynomial $f \in \mathbb{R}[\underline{x}]$ is positive if $p(\underline{\alpha}) \ge 0$ for all $\alpha \in \mathbb{R}^d$.

Obvious examples: sums of squares (SOS)

$$p_1^2 + \cdots + p_\ell^2$$

for $p_i \in \mathbb{R}[\underline{x}]$.

Gauss¹⁸⁰⁰: a positive univariate polynomial is a SOS.

Hilbert's 17th problem

Is every positive polynomial a SOS?

Hilbert¹⁸⁸⁸: not true for d > 1.

Motzkin⁶⁵: $x_1^4 x_2^2 + x_1^2 x_2^4 + 1 - 3x_1^2 x_2^2$ is positive but not SOS.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hilbert's 17th problem

Is every positive polynomial a SOS?

Hilbert¹⁸⁸⁸: not true for d > 1.

Motzkin⁶⁵: $x_1^4 x_2^2 + x_1^2 x_2^4 + 1 - 3x_1^2 x_2^2$ is positive but not SOS.

Theorem (Artin 27; affirmative solution of H17)

A polynomial f is positive if and only if $p^2 \cdot f = s$ for some $p, s \in \mathbb{R}[\underline{x}]$ where s is SOS.

Back to Motzkin:
$$\begin{aligned} (x_1^2+x_2^2)(x_1^4x_2^2+x_1^2x_2^4+1-3x_1^2x_2^2) \\ &= (x_1^2x_2^2(x_1^2+x_2^2+1)+1)(x_1^2+x_2^2-2)^2 \end{aligned}$$

H17 was a breakthrough for **real** algebraic geometry.

Real algebraic geometry

Positivity when subject to constraints

RAG studies sets in \mathbb{R}^d constrained by polynomial inequalities. To a set of constraints $C \subset \mathbb{R}[\underline{x}]$ we assign

$$\mathcal{K}_{\mathcal{C}} = \{\underline{\alpha} \in \mathbb{R}^d : c(\underline{\alpha}) \ge 0 \text{ for all } c \in \mathcal{C}\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

which is called a (basic closed) semialgebraic set if C is finite.

Real algebraic geometry

Positivity when subject to constraints

RAG studies sets in \mathbb{R}^d constrained by polynomial inequalities. To a set of constraints $C \subset \mathbb{R}[\underline{x}]$ we assign

$$\mathcal{K}_{\mathcal{C}} = \{ \underline{\alpha} \in \mathbb{R}^d : c(\underline{\alpha}) \ge 0 \text{ for all } c \in \mathcal{C} \}$$

which is called a (basic closed) semialgebraic set if C is finite.

Polynomials that are obviously positive on $\mathcal{K}_{\mathcal{C}}$:

$$s_0 + s_1 c_1 + \cdots + s_\ell c_\ell, \qquad c_i \in C, \ s_i \in SOS.$$

The set of such polynomials is called the quadratic module, \mathbf{Q}_C . Alternative description of \mathbf{Q}_C : the smallest subset in $\mathbb{R}[\underline{x}]$ containing C such that

$$1 \in \mathbf{Q}_{C}, \quad \mathbf{Q}_{C} + \mathbf{Q}_{C} \subseteq \mathbf{Q}_{C}, \quad p^{2} \cdot \mathbf{Q}_{C} \subseteq \mathbf{Q}_{C} \text{ for } p \in \mathbb{R}[\underline{x}].$$

Putinar's Positivstellensatz

Probably the most used result from RAG

A quadratic module \mathbf{Q}_C is Archimedean if there is $\rho > 0$ such that $\rho - x_i^2 \in \mathbf{Q}_C$ for i = 1, ..., d.

If \mathbf{Q}_C is Archimedean, then \mathcal{K}_C is bounded; if \mathcal{K}_C is bounded, then we can add a constraint to C to get an Archimeden quadratic module without changing \mathcal{K}_C .

Putinar's Positivstellensatz

Probably the most used result from RAG

A quadratic module \mathbf{Q}_C is Archimedean if there is $\rho > 0$ such that $\rho - x_i^2 \in \mathbf{Q}_C$ for i = 1, ..., d.

If \mathbf{Q}_C is Archimedean, then \mathcal{K}_C is bounded; if \mathcal{K}_C is bounded, then we can add a constraint to C to get an Archimeden quadratic module without changing \mathcal{K}_C .

Theorem (Putinar⁹³)

Suppose \mathbf{Q}_C is Archimedean. Then $f \ge 0$ on \mathcal{K}_C if and only if $f + \varepsilon \in \mathbf{Q}_C$ for every $\varepsilon > 0$.

Warning: $f + \varepsilon \in \mathbf{Q}_{C}$ for every $\varepsilon > 0$ does not imply $f \in \mathbf{Q}_{C}$.

Plenty of packages in Matlab and Mathematica

Let $f \in \mathbb{R}[\underline{x}]$ and $C = \{c_1, \ldots, c_\ell\} \subset \mathbb{R}[\underline{x}]$. Suppose \mathbf{Q}_C is Archimedean (\mathcal{K}_C is bounded).

Optimization problem: find $\mu_* = \max\{f(\underline{\alpha}) : \underline{\alpha} \in \mathcal{K}_C\}.$ Equivalently, find $\mu_* = \min\{\mu : \mu - f \ge 0 \text{ on } \mathcal{K}_C\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Plenty of packages in Matlab and Mathematica

Let $f \in \mathbb{R}[\underline{x}]$ and $C = \{c_1, \ldots, c_\ell\} \subset \mathbb{R}[\underline{x}]$. Suppose \mathbf{Q}_C is Archimedean (\mathcal{K}_C is bounded).

Optimization problem: find $\mu_* = \max\{f(\underline{\alpha}) : \underline{\alpha} \in \mathcal{K}_C\}.$ Equivalently, find $\mu_* = \min\{\mu : \mu - f \ge 0 \text{ on } \mathcal{K}_C\}.$ Putinar: $\mu_* = \inf\{\mu : \mu - f \in \mathbf{Q}_C\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Plenty of packages in Matlab and Mathematica

Let $f \in \mathbb{R}[\underline{x}]$ and $C = \{c_1, \ldots, c_\ell\} \subset \mathbb{R}[\underline{x}]$. Suppose \mathbf{Q}_C is Archimedean (\mathcal{K}_C is bounded).

Optimization problem: find $\mu_* = \max\{f(\underline{\alpha}) : \underline{\alpha} \in \mathcal{K}_C\}.$ Equivalently, find $\mu_* = \min\{\mu : \mu - f \ge 0 \text{ on } \mathcal{K}_C\}.$ Putinar: $\mu_* = \inf\{\mu : \mu - f \in \mathbf{Q}_C\}.$

Relax: for $n \in \mathbb{N}$, find $\mu_n = \inf\{\mu: \mu - f = s_0 + s_1c_1 + \dots + s_\ell c_\ell, s_i \text{ SOS of deg } \leq 2n\}.$ Then $\mu_n \searrow \mu_*$, and μ_n can be efficiently computed using

semidefinite programming. (a generalization of linear programming)

Plenty of packages in Matlab and Mathematica

Let $f \in \mathbb{R}[\underline{x}]$ and $C = \{c_1, \ldots, c_\ell\} \subset \mathbb{R}[\underline{x}]$. Suppose \mathbf{Q}_C is Archimedean (\mathcal{K}_C is bounded).

Optimization problem: find $\mu_* = \max\{f(\underline{\alpha}) : \underline{\alpha} \in \mathcal{K}_C\}.$ Equivalently, find $\mu_* = \min\{\mu : \mu - f \ge 0 \text{ on } \mathcal{K}_C\}.$ Putinar: $\mu_* = \inf\{\mu : \mu - f \in \mathbf{Q}_C\}.$

Relax: for $n \in \mathbb{N}$, find $\mu_n = \inf\{\mu \colon \mu - f = s_0 + s_1c_1 + \dots + s_\ell c_\ell, s_i \text{ SOS of deg } \leq 2n\}.$

Then $\mu_n \searrow \mu_*$, and μ_n can be efficiently computed using semidefinite programming. (a generalization of linear programming)

Mantra: checking positivity is a priori hard (geometry), checking for SOS is easy (algebra).

Noncommutative positivity

commutative	noncommutative
numbers	bounded operators on Hilbert spaces
reals	self-adjoint operators
≥ 0	\succeq 0, positive semidefinite
a ²	AA*

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Noncommutative positivity

commutative	noncommutative				
numbers	bounded operators on Hilbert spaces				
reals	self-adjoint operators				
\geq 0	\succeq 0, positive semidefinite				
a ²	AA*				

Let $\underline{x} = (x_1, \dots, x_d)$ be **free (noncommuting)** variables. Elements of the free algebra $\mathbb{R} < \underline{x} >$ are **free polynomials**, e.g.

$$3x_1x_2^2x_1x_2^2x_1 - x_2x_1^4x_2 + x_1x_2 + x_2x_1 - 2.$$

There is a natural involution * on $\mathbb{R} < \underline{x} >$ that fixes x_i :

$$(x_{i_1}x_{i_2}\cdots x_{i_\ell})^*=x_{i_\ell}\cdots x_{i_2}x_{i_1}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Three settings to consider

Free polynomials can be evaluated on tuples of operators on a Hilbert space. If $f = x_2 x_1^4 x_2 + x_1 x_2 + x_2 x_1 - 2$ and $\underline{X} \in \mathcal{B}(H)^2$,

$$f(\underline{X}) = X_2 X_1^4 X_2 + X_1 X_2 + X_2 X_1 - 2I \in \mathcal{B}(H).$$

Note: if $f = f^*$ and \underline{X} is a tuple of self-adjoint operators, then $f(\underline{X})$ is self-adjoint.

We consider noncommutative analogs of global positivity (H17) and bounded positivity (Putinar) in three settings:

- (i) positivity on $S_n(\mathbb{R})^d$ for a **fixed** *n*
- (ii) positivity on $S_n(\mathbb{R})^d$ for all n
- (iii) positivity on $S(H)^d$, for a separable ∞ -dim Hilbert space H

 $S_n(\mathbb{R})$ real symmetric $n \times n$ matrices, S(H) self-adjoint bounded operators

Example

Let g be the bivariate nc polynomial

$$2x_2x_1^3x_2 - x_2x_1x_2x_1^2 - x_1^2x_2x_1x_2 - x_1x_2x_1^2x_2 - x_2x_1^2x_2x_1 + x_1x_2^2x_1^2 + x_1^2x_2^2x_1$$

and let $f(x_1, x_2) := g(x_1^2, x_2)$. So $f = f^* \in \mathbb{R} \le x >$, and we can talk about positivity of f.

Then

- ► f(X₁, X₂) is positive semidefinite for every 2 × 2 symmetric matrices X₁ and X₂,
- $f(Y_1, Y_2)$ has a negative eigenvalue for

$$Y_1 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad Y_2 = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

Thus $f \succeq 0$ on $S_2(\mathbb{R})^2$ (and $S_1(\mathbb{R})^2 = \mathbb{R}^2$), but $f \not\succeq 0$ on $S_3(\mathbb{R})^2$.

Background: courtesy of Bill Helton ・ロト ・ 雪 ト ・ ヨ ト

3

NC semialgebraic sets and quadratic modules Sums of hermitian squares (SOHS):

$$p_1p_1^* + \cdots + p_\ell p_\ell^*, \qquad p_i \in \mathbb{R} < \underline{x} > .$$

To a subset of self-adjoint polynomials $C \subset \mathbb{R} < \underline{x} >$ we assign

$$\mathcal{K}_{C}(n) = \{ \underline{X} \in S_{n}(\mathbb{R})^{d} : c(\underline{X}) \succeq 0 \text{ for all } c \in C \}$$
$$\mathcal{K}_{C}^{\text{fin}} = \bigcup_{n \in \mathbb{N}} \mathcal{K}_{C}(n)$$
$$\mathcal{K}_{C}^{\infty} = \{ \underline{X} \in S(H)^{d} : c(\underline{X}) \succeq 0 \text{ for all } c \in C \}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

NC semialgebraic sets and quadratic modules Sums of hermitian squares (SOHS):

$$p_1p_1^* + \cdots + p_\ell p_\ell^*, \qquad p_i \in \mathbb{R} < \underline{x} > .$$

To a subset of self-adjoint polynomials $C \subset \mathbb{R} < \underline{x} >$ we assign

$$\mathcal{K}_{C}(n) = \{ \underline{X} \in S_{n}(\mathbb{R})^{d} : c(\underline{X}) \succeq 0 \text{ for all } c \in C \}$$
$$\mathcal{K}_{C}^{\text{fin}} = \bigcup_{n \in \mathbb{N}} \mathcal{K}_{C}(n)$$
$$\mathcal{K}_{C}^{\infty} = \{ \underline{X} \in S(H)^{d} : c(\underline{X}) \succeq 0 \text{ for all } c \in C \}.$$

The quadratic module \mathbf{Q}_C generated by C in $\mathbb{R} < \underline{x} >$:

$$\sum_{i,j} p_{ij} c_i p_{ij}^*, \qquad c_i \in \mathcal{C} \cup \{1\}, \ p_{ij} \in \mathbb{R} < \underline{x} >$$

That is, \mathbf{Q}_C is the smallest subset of $\mathbb{R} < \underline{x} >$ containing *C* such that

$$1 \in \mathbf{Q}_{C}, \quad \mathbf{Q}_{C} + \mathbf{Q}_{C} \subseteq \mathbf{Q}_{C}, \quad p \cdot \mathbf{Q}_{C} \cdot p^{*} \subseteq \mathbf{Q}_{C} \text{ for } p \in \mathbb{R} < \underline{x} > .$$

Dimension-free results for free polynomials Global positivity

Theorem (McCullough⁰¹, Helton⁰²)

Let $f = f^* \in \mathbb{R} < \underline{x} >$. Then $f(\underline{X}) \succeq 0$ for all $\underline{X} \in S_n(\mathbb{R})^d$ and $n \in \mathbb{N}$ if and only if f is SOHS.

No denominators (cf. the classical H17) are needed! Typical for dimension-free setting: you ask for more, you get more.

Given f, it actually suffices to check $f \succeq 0$ on $S_n(\mathbb{R})^d$ for a large enough n (depending on d and deg f).

Dimension-free results for free polynomials

Bounded positivity

 $\mathbf{Q}_{\mathcal{C}}$ Archimedean: $\rho - x_i^2 \in \mathbf{Q}_{\mathcal{C}}$ for some $\rho > 0$.

Theorem (Helton–McCullough⁰⁴)

If \mathbf{Q}_C is Archimedean, then $f \succeq 0$ on \mathcal{K}_C^{∞} if and only if $f + \varepsilon \in \mathbf{Q}_C$ for every $\varepsilon > 0$.

In general, $\mathcal{K}_C^{\text{fin}}$ does not suffice (take constraints determining a universal C^* -algebra without finite-dim representations, e.g. Cuntz algebra)

・ロト・個ト・モト・モト ヨー シタぐ

Dimension-free results for free polynomials

Bounded positivity

 $\mathbf{Q}_{\mathcal{C}}$ Archimedean: $\rho - x_i^2 \in \mathbf{Q}_{\mathcal{C}}$ for some $\rho > 0$.

Theorem (Helton–McCullough⁰⁴)

If \mathbf{Q}_C is Archimedean, then $f \succeq 0$ on \mathcal{K}_C^{∞} if and only if $f + \varepsilon \in \mathbf{Q}_C$ for every $\varepsilon > 0$.

In general, $\mathcal{K}_C^{\text{fin}}$ does not suffice (take constraints determining a universal C^* -algebra without finite-dim representations, e.g. Cuntz algebra)

Theorem (Helton-Klep-McCullough¹²)

If \mathbf{Q}_C is Archimedean and $\mathcal{K}_C^{\text{fin}}$ is convex, then $f \succeq 0$ on $\mathcal{K}_C^{\text{fin}}$ if and only if $f \in \mathbf{Q}_C$.

No ε as in the classical Putinar is needed!

Didn't explain convexity... for later, $C = \{1 - x_1^2, \dots, 1 - x_d^2\}$

Free polynomials, but fixed dimension Procesi–Schacher conjecture

Conjecture (Procesi–Schacher⁷⁶)

Fix n, and let $f = f^* \in \mathbb{R} < \underline{x} >$. Then $f(\underline{X}) \succeq 0$ for all $\underline{X} \in S_n(\mathbb{R})^d$ if and only if

$$pfp^* = s + p_0$$

where $p, s, p_0 \in \mathbb{R} < \underline{x} >$, s is a SOHS and p_0 vanishes on $S_n(\mathbb{R})^d$.

Free polynomials, but fixed dimension Procesi–Schacher conjecture

Conjecture (Procesi–Schacher⁷⁶)

Fix n, and let $f = f^* \in \mathbb{R} < \underline{x} >$. Then $f(\underline{X}) \succeq 0$ for all $\underline{X} \in S_n(\mathbb{R})^d$ if and only if

$$pfp^* = s + p_0$$

where $p, s, p_0 \in \mathbb{R} < \underline{x} >$, s is a SOHS and p_0 vanishes on $S_n(\mathbb{R})^d$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Artin²⁷ (classical): true for n = 1

Procesi–Schacher⁷⁶: true for n = 2

Free polynomials, but fixed dimension Procesi–Schacher conjecture

Conjecture (Procesi–Schacher⁷⁶)

Fix n, and let $f = f^* \in \mathbb{R} < \underline{x} >$. Then $f(\underline{X}) \succeq 0$ for all $\underline{X} \in S_n(\mathbb{R})^d$ if and only if

$$pfp^* = s + p_0$$

where $p, s, p_0 \in \mathbb{R} < \underline{x} >$, s is a SOHS and p_0 vanishes on $S_n(\mathbb{R})^d$.

Artin²⁷ (classical): true for n = 1Procesi–Schacher⁷⁶: true for n = 2Klep–Špenko–V¹⁸: false for n = 3 example of deg = 15

Educated guess: false for most *n*. Less sure for powers of 2; n = 4?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Free polynomials, but fixed dimension

Bounded case is still nice

Theorem (Klep–Špenko–V¹⁸) Fix $n, f = f^* \in \mathbb{R} < \underline{x} > and C \subset \mathbb{R} < \underline{x} >$. If \mathbf{Q}_C is Archimedean, then $f \succeq 0$ on $\mathcal{K}_C(n)$ if and only if for every $\varepsilon > 0$,

$$f + \varepsilon - p_0 \in \mathbf{Q}_C$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for some $p_0 \in \mathbb{R} < \underline{x} > vanishing on S_n(\mathbb{R})^d$.

Trace polynomials

Pure trace polynomials, \mathbb{T} , are polynomials in trace symbols tr(w) for words w in \underline{x} , subject to the usual trace relations:

$$\operatorname{tr}(x_{i_1}x_{i_2}\cdots x_{i_\ell})=\operatorname{tr}(x_{i_2}\cdots x_{i_\ell}x_{i_1}), \qquad \operatorname{tr}(w^*)=\operatorname{tr}(w).$$

So \mathbb{T} is a polynomial ring in countably many generators tr(w), which are equivalence classes of words w.r.t. the "dihedral" action.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Trace polynomials: $\mathbb{T} < \underline{x} > = \mathbb{T} \otimes \mathbb{R} < \underline{x} >$.

$$\begin{aligned} & \operatorname{tr}(x_1^2 x_2 x_1 x_2) - \operatorname{tr}(x_1^2 x_2) \operatorname{tr}(x_2) \in \mathbb{T}, \\ & \operatorname{tr}(x_1) x_1 x_2 x_1 - \operatorname{tr}(x_1^2 x_2) \operatorname{tr}(x_1) \operatorname{tr}(x_2) x_2^2 + 2 \operatorname{tr}(x_1^4) \in \mathbb{T} < \underline{x} >. \end{aligned}$$

Trace polynomials continued

Originated in invariant theory.

Procesi⁷⁶: every polynomial function $f : M_n(\mathbb{R})^d \to M_n(\mathbb{R})$ that is equivariant under simultaneous basis change,

 $f(P\underline{X}P^{-1}) = Pf(\underline{X})P^{-1}$, is given by a trace polynomial.

Tracial inequalities and optimization of trace polynomials are also of interest in quantum information theory and free probability.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Trace polynomials continued

Originated in invariant theory.

Procesi⁷⁶: every polynomial function $f : M_n(\mathbb{R})^d \to M_n(\mathbb{R})$ that is equivariant under simultaneous basis change, $f(PXP^{-1}) = Pf(X)P^{-1}$, is given by a trace polynomial.

Tracial inequalities and optimization of trace polynomials are also of interest in quantum information theory and free probability.

We evaluate trace polynomials on tracial von Neumann algebras: pairs of a von Neumann algebra \mathcal{F} (w.o.t.-closed unital *-subalgebra of bounded operators) and a faithful normal trace τ on \mathcal{F} .

(日)((1))

E.g. $M_n(\mathbb{R})$ with the *normalized* trace $tr(A) = \frac{1}{n} \sum_{i=1}^n A_{ii}$.

Traces and positivity

traces of squares

(Sums of) hermitian squares and their traces (SOHST):

$$\operatorname{\mathsf{tr}}(p_1p_1^*)\cdots\operatorname{\mathsf{tr}}(p_\ell p_\ell^*)p_0p_0^*,\qquad p_i\in\mathbb{T}{<}\underline{x}{>}\,.$$

To $C \subset \mathbb{T} < \underline{x} >$ we assign $\mathcal{K}_C(n)$ and $\mathcal{K}_C^{\text{fin}}$ as before; let $\mathcal{K}_C^{\text{vna}}$ be the tuples satisfying the constraints C from all tracial von Neumann algebras.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Traces and positivity

traces of squares

(Sums of) hermitian squares and their traces (SOHST):

$$\operatorname{tr}(p_1p_1^*)\cdots\operatorname{tr}(p_\ell p_\ell^*)p_0p_0^*, \qquad p_i\in\mathbb{T}{<}\underline{x}{>}\,.$$

To $C \subset \mathbb{T} < \underline{x} >$ we assign $\mathcal{K}_C(n)$ and $\mathcal{K}_C^{\text{fin}}$ as before; let $\mathcal{K}_C^{\text{vna}}$ be the tuples satisfying the constraints C from all tracial von Neumann algebras.

The cyclic quadratic module \mathbf{Q}_C is the smallest subset of $\mathbb{T} < \underline{x} >$ containing C such that

$$1 \in \mathbf{Q}_{\mathcal{C}}, \quad \mathbf{Q}_{\mathcal{C}} + \mathbf{Q}_{\mathcal{C}} \subseteq \mathbf{Q}_{\mathcal{C}}, \quad p \cdot \mathbf{Q}_{\mathcal{C}} \cdot p^* \subseteq \mathbf{Q}_{\mathcal{C}} \text{ for } p \in \mathbb{T} {<} \underline{x} {>}$$

and

$tr(\mathbf{Q}_{C}) \subseteq \mathbf{Q}_{C}.$

Trace polynomials, fixed dimension

Theorem (Procesi–Schacher⁷⁶) Fix n, and let $f = f^* \in \mathbb{T} < \underline{x} >$. Then $f(\underline{X}) \succeq 0$ for all $\underline{X} \in S_n(\mathbb{R})^d$ if and only if

$$pfp^* = s + p_0$$

where $p, s, p_0 \in \mathbb{T} < \underline{x} >$, s is a SOHST and p_0 vanishes on $S_n(\mathbb{R})^d$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Trace polynomials, fixed dimension

Theorem (Procesi–Schacher⁷⁶) Fix n, and let $f = f^* \in \mathbb{T} < \underline{x} >$. Then $f(\underline{X}) \succeq 0$ for all $\underline{X} \in S_n(\mathbb{R})^d$ if and only if

$$pfp^* = s + p_0$$

where $p, s, p_0 \in \mathbb{T} < \underline{x} >$, s is a SOHST and p_0 vanishes on $S_n(\mathbb{R})^d$.

Theorem (Klep–Špenko–V¹⁸) Fix $n, f = f^* \in \mathbb{T} < \underline{x} > and C \subset \mathbb{T} < \underline{x} >$. If \mathbf{Q}_C is Archimedean, then $f \succeq 0$ on $\mathcal{K}_C(n)$ if and only if for every $\varepsilon > 0$,

$$f + \varepsilon - p_0 \in \mathbf{Q}_C$$

for some $p_0 \in \mathbb{T} < \underline{x} > vanishing on S_n(\mathbb{R})^d$.

・ロト・国ト・モート ヨー うらぐ

What about the dimension-free setting?

The Connes⁷⁶ embedding conjecture for von Neumann algebras (Kirchberg's conjecture for tensor products of *C**-alg, Tsirelson's problem in QIT) has been recently refuted using complexity theory (Ji–Natarajan–Vidick–Wright–Yuen²⁰).

Theorem (Klep–Schweighofer⁰⁸) Let $d \ge 2$ and $C = \{1 - x_1^2, \dots, 1 - x_d^2\}$. The failure of CEC is equivalent to the existence of $f \in \mathbb{R} < \underline{x} >$ such that

•
$$tr(f(\underline{X})) \ge 0$$
 for all $\underline{X} \in \mathcal{K}_C^{fin}$;

•
$$tr(f(\underline{Y})) < 0$$
 for some $\underline{Y} \in \mathcal{K}_{\mathcal{C}}^{vna}$.

Conclusion: a quadratic module certificate can only work in the ∞ -dimensional setting (even convex $\mathcal{K}_{C}^{\text{fin}}$ doesn't help).

The bounded setting and von Neumann algebras

Theorem (Klep–Magron–V²⁰)

Let $f \in \mathbb{T}$ and let $\mathbf{Q}_C \subset \mathbb{T} < \underline{x} >$ be Archimedean. Then $f \succeq 0$ on $\mathcal{K}_C^{\text{vna}}$ if and only if $f + \varepsilon \in \mathbf{Q}_C$ for every $\varepsilon > 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The bounded setting and von Neumann algebras

Theorem (Klep–Magron–V²⁰)

Let $f \in \mathbb{T}$ and let $\mathbf{Q}_C \subset \mathbb{T} < \underline{x} >$ be Archimedean. Then $f \succeq 0$ on $\mathcal{K}_C^{\text{vna}}$ if and only if $f + \varepsilon \in \mathbf{Q}_C$ for every $\varepsilon > 0$.

This version fails for $f \in \mathbb{T} < \underline{x} >$.

E.g. take $f = x_1$ and $C = \{1 - x_1^2\} \cup \{\operatorname{tr}(x_1 p p^*) \colon p \in \mathbb{R} < \underline{x} > \}.$

Not sure about $|C| < \infty$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The bounded setting and von Neumann algebras

Theorem (Klep-Magron-V²⁰) Let $f \in \mathbb{T}$ and let $\mathbf{Q}_C \subset \mathbb{T} < \underline{x} >$ be Archimedean. Then $f \succeq 0$ on $\mathcal{K}_C^{\text{vna}}$ if and only if $f + \varepsilon \in \mathbf{Q}_C$ for every $\varepsilon > 0$. This version fails for $f \in \mathbb{T} < \underline{x} >$. E.g. take $f = x_1$ and $C = \{1 - x_1^2\} \cup \{\text{tr}(x_1pp^*) : p \in \mathbb{R} < \underline{x} >\}$. Not sure about $|C| < \infty$?

Theorem (Klep–Magron–V²⁰)

Let $f \in \mathbb{T} < \underline{x} >$ and let $\mathbf{Q}_C \subset \mathbb{T} < \underline{x} >$ be Archimedean. Then $f \succeq 0$ on $\mathcal{K}_C^{\text{vna}}$ if and only if for every $\varepsilon > 0$, there are univariate sums of squares $s_1, s_2 \in \mathbb{R}[t]$ such that

$$f = s_1(f) - s_2(f)$$
 and $\varepsilon - \operatorname{tr}(s_2(f)) \in \mathbf{Q}_C$.

Global trace positivity?

Open questions for $f \in \mathbb{T} < \underline{x} >$:

- (i) Is $f \succeq 0$ on $\mathcal{K}_{\emptyset}^{\text{fin}}$ equivalent to $f \succeq 0$ on $\mathcal{K}_{\emptyset}^{\text{vna}}$?
- (ii) Can at least the second one be certified using SOHST in some way?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(iii) If not, what is missing?

Global trace positivity?

Open questions for $f \in \mathbb{T} < \underline{x} >$:

- (i) Is $f \succeq 0$ on $\mathcal{K}_{\emptyset}^{\text{fin}}$ equivalent to $f \succeq 0$ on $\mathcal{K}_{\emptyset}^{\text{vna}}$?
- (ii) Can at least the second one be certified using SOHST in some way?
- (iii) If not, what is missing?

Resolved in case d = 1, i.e., $\mathbb{T} < \underline{x} > = \mathbb{R}[x, tr(x), tr(x^2), \dots]$

Theorem (Klep–Pascoe–V²⁰)

Let d = 1 and $f \in \mathbb{T} < \underline{x} >$. Then $f(X) \succeq 0$ for all $X \in S_n(\mathbb{R})$ and $n \in \mathbb{N}$ if and only if $p^2 \cdot f = s$ where $p, s \in \mathbb{T} < \underline{x} >$ and s is SOHST.

Summary

Free polynomials, $\mathbb{R} < \underline{x} >$		Trace polynomials, $\mathbb{T}<\underline{x}>$			
	global	bounded		global	bounded
fixed n	√/×/? ¹	\checkmark	fixed n	\checkmark	\checkmark
all <i>n</i>	\checkmark	×/√ ²	all <i>n</i>	? 3	\times ⁴
∞	\checkmark	√	∞	?	√

Free polynomials,
$$\mathbb{R}{<}\underline{x}{>}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

¹:
$$\checkmark$$
 for $n = 1, 2$; \times for $n = 3$; powers of two?

- ²: \checkmark when convex; \times in general
- ³: \checkmark for d = 1
- ⁴: (CEC) would be nice to have an explicit example

Summary

Free polynomials, $\mathbb{R} < \underline{x} >$			Trace polynomials, $\mathbb{T} {<} \underline{x} {>}$			
	global	bounded			global	bounded
fixed n	✓/×/? ¹	\checkmark		fixed n	\checkmark	\checkmark
all <i>n</i>	\checkmark	×/√ ²		all <i>n</i>	? 3	× 4
∞	\checkmark	\checkmark		∞	?	\checkmark

¹:
$$\checkmark$$
 for $n = 1, 2$; \times for $n = 3$; powers of two?

- ²: \checkmark when convex; \times in general
- ³: \checkmark for d = 1
- ⁴: (CEC) would be nice to have an explicit example

Thank you!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで