Project 3 • Fall 2019 • PROF. BOYLAND

Must be emailed to boyland@ufl.edu as a pdf file by 5:00 PM on Wednesday, December 11. Please try to keep file size under 2MB. Each answer must include Matlab code (if used), any rendered images required and the answer to all questions.

Part A: Noise Filter

1. Get the files proj3a.txt and mask1.txt from the homework webpage and put the content of the first file into a Matlab script and the second make a Matlab function. Save the files and run the script.
2. It should produce three images. The original image, the noisy image, and the filtered image.
3. Questions:
(a) If A and B are $M \times N$ matrices, their convolution using Matlab indexing $m=1, \ldots, M$ and $n=1, \ldots, N$ is

$$
(A * B)_{m, n}=\sum_{k=1}^{M} \sum_{\ell=1}^{N} A_{k, \ell} B_{m-k+1, n-\ell+1} .
$$

with indices cyclically reduced. Show with a hand calculation that the array B defined by the function mask1 implements this local averaging

$$
(A * B)_{m, n}=\frac{1}{5}\left(A_{m, n}+A_{m-1, n}+A_{m, n-1}+A_{m+1, n}+A_{m, n+1}\right)
$$

(b) Examine the noisy and filtering images produced. Does the filtering decrease the speckling? Does the filtering improve or blur the image resolution?

Note: you do not have to turn in any images or code for Part A, just the answers to the Questions.

Part B: Edge Detection

1. Get the file proj3b from the class homework website and use the code in it to load the circuit board image, rescale it, turn it into a single greyscale image $\mathbf{z g}$, display that and a reverse image of that. Note that this image is a different size than the one in Part A.
2. If $f(x, y)$ represents the values of a greyscale image then points (x, y) where

$$
\frac{\partial f}{\partial y}(x, y)
$$

is large in magnitude indicate horizontal edges. The simplest discrete approximation of this is

$$
\frac{\partial f}{\partial y}(x, y) \approx \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}
$$

Since we are not concerned with scale, we seek a mask H that implements

$$
(A * H)_{m, n}=A_{m+1, n}-A_{m, n}
$$

Note that in a matrix the first coordinate is vertical, so the y-direction is in the first coordinate.
(a) Write a Matlab function mask2 that creates this mask H.
(b) Apply it to the array zg as done in Part A to create a filtered array hg.
(c) Since it is the magnitude of the filtered array that matters, display abs (hg) as a reverse image (the reverse makes the elements with largest magnitude black).
3. Repeat B 2 , but this time with a mask you have created to find vertical edges.
4. Now create a procedure that displays all edges, both horizontal and vertical and use it to repeat the steps of B2. Hint: what matters is the magnitude of the gradient of f, or

$$
\sqrt{\frac{\partial f^{2}}{\partial x}+\frac{\partial f^{2}}{\partial y}}
$$

