## REVIEW FOR EXAM 3 • SPRING 2020 • PROF. BOYLAND

You should know how to do all "show that" and hand computation from the HW's 9, 10, 11, 12. There are two parts of the review. Part I are problems some of which will appear verbatim on the exam. I will not give solutions for them, that is your job. Part II problems are more computational and solutions are provided.

## Part I

1. State and prove the Convolution Theorem for the DFT.
2. If $\left\{\vec{q}_{1}, \ldots, \vec{q}_{N}\right\}$ is an orthonormal basis of $\mathbb{C}^{N}$ and $\vec{v}=\sum \alpha_{i} \vec{q}_{i}$, show that $\alpha_{k}=\left\langle\vec{q}_{k}, \vec{v}_{k}\right\rangle$.
3. (a) Define unitary matrix and show that if $U$ is unitary then $\langle U \vec{x}, U \vec{y}\rangle=\langle\vec{x}, \vec{y}\rangle$ for any two vectors $\vec{x}, \vec{y} \in \mathbb{C}^{N}$.
(b) If $\hat{x}=\operatorname{DFT}(x)$, show that

$$
\sum_{j=0}^{N-1}\left|x_{j}\right|^{2}=\sum_{j=0}^{N-1}\left|\hat{x}_{j}\right|^{2}
$$

You may use the Pythagorean Theorem.
4. Define Hermitian matrix and show that a Hermitian matrix always has real eigenvalues.
5. If $A$ is $100 \times 100, B$ is $100 \times 100$, and $C$ is $100 \times 1$, which order of multiplication is more efficient $(A B) C$ or $A(B C)$ ? Be sure to justify your answer completely.
6. If $x$ is in $\mathbb{R}^{N}$ with $N$ even and $\hat{x}=\operatorname{DFT}(x)$, show that for $k=1, \ldots, \frac{N}{2}-1$

$$
\overline{\hat{x}_{k}}=\hat{x}_{N-k} .
$$

## Part II

1. Let $f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2} x_{2}, x_{1} x_{2}^{3}, x_{1} x_{2}\right), g\left(y_{1}, y_{2}, y_{3}\right)=\left(y_{1} y_{2}, y_{2} y_{3}\right)$, and $h=g \circ f$. Use the matrix chain rule to compute the matrix derivative $D h$. Your answer must be in terms of $x_{1}, x_{2}$ and contain no $y_{1}, y_{2}$ or $y_{3}$ and be a single matrix.
2. Let $\overrightarrow{o n e}=[1,1, \ldots, 1]^{T}$, the vector consisting of $N$ ones. Compute $\operatorname{DFT}(\overrightarrow{o n e})$.
3. Given $u=[1,3,-2]^{T}$ and $v=[1,2,3]^{T}$, by hand compute the cyclic convolution $u * v$. Show all work.
4. On $\mathbb{R}^{2}$ define the inner product

$$
\langle\vec{u}, \vec{v}\rangle=\vec{u}^{T}\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \vec{v}
$$

(a) Starting with the basis $[1,0]^{T},[0,1]^{T}$, using the Gram-Schmidt process compute an orthonormal basis with respect to this inner product.
(b) Express the vector $\vec{w}=[-1,1]^{T}$ in terms of your orthonormal basis.
5. Let $N=5$.
(a) Find the impulse response $\vec{g}$ so that for any vector $\vec{f}$,

$$
(\vec{f} * \vec{g})_{n}=\frac{1}{2} f_{n-1}-\frac{1}{2} f_{n}+\frac{1}{2} f_{n+1} .
$$

(b) Give the $5 \times 5$ matrix $M$ so that for any vector $\vec{f}$ we have $M \vec{f}=\vec{f} * \vec{g}$.
6. (A) For each of the net diagrams on the last page write down the form of the input-output function $F(x, \eta)$.
(B) Assuming the activation $\sigma$ is differentiable, for nets (a) and (b) write a formula for the derivative of $F$ with respect to the parameters $\eta$.
(C) For net (c), find the parameters $w_{1}, w_{2}, b$ so that the network classifies $(1,0),(1,-1)$ and $(0,-2)$ as 0 and $(0,0),(-1,0)$ and $(0,1)$ as 1 .
(D) For net (a) if the parameters are

$$
W=\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right) \quad \vec{b}=\binom{3}{0}
$$

and the activation is the ramp, $\sigma_{R}$, evaluate the output for the given input of $\vec{x}=[1,-1]^{T}$.
(a)

(b)


$$
\underset{\text { activation }}{ }=\pi
$$

(c)

$$
x_{1} \xrightarrow[x_{2}]{\stackrel{\omega_{2}}{\omega_{2}}(b)} \underset{p}{\rightarrow} \rightarrow z \text { activation }=\sigma_{s} \text { Destep. }
$$

