REVIEW FOR EXAM 3 • SPRING 2020 • PROF. BOYLAND

You should know how to do all "show that" and hand computation from the HW's 9, 10, 11, 12. There are two parts of the review. Part I are problems some of which will appear verbatim on the exam. I will not give solutions for them, that is your job. Part II problems are more computational and solutions are provided.

Part I

- 1. State and prove the Convolution Theorem for the DFT.
- 2. If $\{\vec{q}_1, \ldots, \vec{q}_N\}$ is an orthonormal basis of \mathbb{C}^N and $\vec{v} = \sum \alpha_i \vec{q}_i$, show that $\alpha_k = \langle \vec{q}_k, \vec{v}_k \rangle$.
- 3. (a) Define unitary matrix and show that if U is unitary then $\langle U\vec{x}, U\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ for any two vectors $\vec{x}, \vec{y} \in \mathbb{C}^N$.
 - (b) If $\hat{x} = \text{DFT}(x)$, show that

$$\sum_{j=0}^{N-1} |x_j|^2 = \sum_{j=0}^{N-1} |\hat{x}_j|^2.$$

You may use the Pythagorean Theorem.

- 4. Define Hermitian matrix and show that a Hermitian matrix always has real eigenvalues.
- 5. If A is 100×100 , B is 100×100 , and C is 100×1 , which order of multiplication is more efficient (AB)C or A(BC)? Be sure to justify your answer completely.
- 6. If x is in \mathbb{R}^N with N even and $\hat{x} = \text{DFT}(x)$, show that for $k = 1, \dots, \frac{N}{2} 1$

$$\overline{\hat{x}_k} = \hat{x}_{N-k}.$$

Part II

- 1. Let $f(x_1, x_2) = (x_1^2 x_2, x_1 x_2^3, x_1 x_2)$, $g(y_1, y_2, y_3) = (y_1 y_2, y_2 y_3)$, and $h = g \circ f$. Use the matrix chain rule to compute the matrix derivative Dh. Your answer must be in terms of x_1, x_2 and contain no y_1, y_2 or y_3 and be a single matrix.
- 2. Let $\overrightarrow{one} = [1, 1, \dots, 1]^T$, the vector consisting of N ones. Compute DFT (\overrightarrow{one}) .
- 3. Given $u = [1, 3, -2]^T$ and $v = [1, 2, 3]^T$, by hand compute the cyclic convolution u * v. Show all work.
- 4. On \mathbb{R}^2 define the inner product

$$\langle \vec{u}, \vec{v} \rangle = \vec{u}^T \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \vec{v}$$

- (a) Starting with the basis $[1,0]^T, [0,1]^T$, using the Gram-Schmidt process compute an orthonormal basis with respect to this inner product.
- (b) Express the vector $\vec{w} = [-1, 1]^T$ in terms of your orthonormal basis.

5. Let N = 5.

(a) Find the impulse response \vec{g} so that for any vector \vec{f} ,

$$(\vec{f} * \vec{g})_n = \frac{1}{2}f_{n-1} - \frac{1}{2}f_n + \frac{1}{2}f_{n+1}.$$

- (b) Give the 5 × 5 matrix M so that for any vector \vec{f} we have $M\vec{f} = \vec{f} * \vec{g}$.
- 6. (A) For each of the net diagrams on the last page write down the form of the input-output function $F(x, \eta)$.
 - (B) Assuming the activation σ is differentiable, for nets (a) and (b) write a formula for the derivative of F with respect to the parameters η .
 - (C) For net (c), find the parameters w_1, w_2, b so that the network classifies (1,0), (1,-1) and (0,-2) as 0 and (0,0), (-1,0) and (0,1) as 1.
 - (D) For net (a) if the parameters are

$$W = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \quad \vec{b} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

and the activation is the ramp, σ_R , evaluate the output for the given input of $\vec{x} = [1, -1]^T$.

[È

> Z actuation = Ts hestep. XI b ×2