
New Dynamial Invariants on Hyperboli ManifoldsPhilip BoylandDepartment of MathematisUniversity of FloridaGainesville, FL 32611-8105boyland�math.u.eduAbstrat. The rotation measure is an asymptoti dynamial invariant assignedto a typial point of a ow in a �ber bundle over a hyperboli manifold. The totalmass of the rotation measure is the average speed of the orbit and its \diretion"is the ergodi invariant probability measure of the hyperboli geodesi ow whihbest aptures the asymptoti dynamis of the given point. The rotation measureexists almost everywhere and is onstant for an ergodi measure of the given owand so it may be viewed as assigning an ergodi measure of the geodesi ow toone of the given ow. It generalizes the usual notion of homology rotation vetorby enoding homotopy information.Setion 0: Introdution.In a seminal paper Morse ompared the geodesis of a general metri on a higher genussurfae to the hyperboli geodesis ([M℄). His work when transfered into the language ofdynamial systems says that there always exists a ompat set invariant under the geodesiow of the general metri whih is semi-onjugate to the hyperboli geodesi ow (f.[DM℄). The idea of omparing the dynamis of one system to a \anonial" one on thesame manifold has ontinued to be fruitful and has found frequent appliation.In this paper we ompare the dynamis of a general ow �t on a bundle B overa losed hyperboli manifold M to the dynamis of the hyperboli geodesi ow gt onthe unit tangent bundle T1M of the same manifold. This omparison makes use of therotation measure whih assigns to a typial point in the bundle an invariant measure ofthe hyperboli geodesi ow. The assigned gt-invariant measure gives, in a preise sense,the asymptoti diretion of the �t-orbit through the point. The total mass of the rotationmeasure is the asymptoti progress of the lifted orbit in the universal over. The �rstmain theorem, Theorem 3.2, asserts that for an ergodi �t-invariant measure the rotationmeasure exists almost everywhere and is onstant. Thus the rotation measure assigns agt-invariant measure �(�) to a �t-invariant ergodi measure �. The seond main theorem,Theorem 4.1, states that �(�) is itself ergodi under gt and further, that the system (�t; �)is measure theoretially semionjugate to (gt; �(�)).Examples of dynamial systems where the rotation measure an be used are given inx1.1. These inlude ows on the hyperboli manifold M itself, di�eomorphisms of M thatare isotopi to the identity, surfae di�eomorphisms whih are isotopi to pseudoAnosovmaps, and time periodi Euler-Lagrange ows whose on�guration spae is M . In the lastase (whih inludes the geodesi ows of general metris) it is known that there is aninvariant measure whose rotation measure is equal to the Liouville measure of the geodesi1991 Mathematis Subjet Classi�ation. Primary 58F25; Seondary 58F17.1



ow (f. [BG℄). This is also the ase for the surfae di�eomorphism desribed in x5. Sinethe generi orbit for Liouville measure explores all the topology of the manifold and thegeodesi ow is Bernoulli with respet to Liouville measure, its ourrene as a rotationmeasure indiates that the given system is dynamially very ompliated. In general, agiven ow will not have this level of omplexity, and the rotation measures of variousergodi measures will be \smaller" measures within the geodesi ow. The dynamialomplexity of the given ow is then quanti�ed using the entropy and topology of thesesmaller rotation measures.It is instrutive to ompare the rotation measure with the homology rotation vetorwhih goes bak to Shwartzman ([S℄, see [Bd℄, Setion 11 for a review, and x4.3 belowfor a preise de�nition). This dynamial invariant is often used to quantify dynamis usingthe ambient topology and an be de�ned by lifting the ow to the universal free Abelianover of M . (For simpliity of exposition we now restrit to the ase of a ow on M itself.)The displaement of a lifted trajetory after a time t is given by an element of the vetorspae H1(M ;R). The homology rotation vetor of the trajetory is the average value ofthese displaement vetors as t ! 1, if the limit exists. The rotation measure may beviewed as a generalization of the homology rotation vetor whih keeps trak of homotopylasses of trajetories rather than homology lasses.To ompute homotopy information it is neessary to lift the dynamis to the universalover. If there is an equivariant Riemannian metri in the universal over whih has aunique geodesi ar onneting eah pair of points (as in the hyperboli ase onsideredhere), then the amount of displaement of a trajetory after a time t is gauged by thegeodesi ar from the initial point on the trajetory to its position after time t. Anasymptoti average of these geodesi ars must now be omputed. The method employedhere is to identify the ar with the arlength measure supported on it, and then take theasymptoti average of these measures using the weak limit.The rotation measure an also be de�ned using approximating loops and losedgeodesis. Given a long trajetory in M , glue on a small ar to lose it into a loop (f.[Fd℄). If one was omputing the homology rotation vetor, the homology lass of this loopwould be divided by the elapsed time, and then the limit taken as t!1. To ompute therotation measure, pass to the unique, losed, hyperboli geodesi in the same free homo-topy lass as the loop, take the ar length measure on the losed geodesi divided by theelapsed time, and then take the weak limit as t!1. This makes it lear that a periodiorbit of the given ow �t has a rotation measure supported on the unique losed geodesiin its free homotopy lass. The total mass of the rotation measure will be the speed of theprojetion of the orbit onto the losed geodesi. Thus, in partiular, the rotation measuredistinguishes periodi orbits that are in the same homology lasses but di�erent homotopylasses.An essential �rst step in the proof of the main theorems is provided by Lemma 2.2.It states that for a positive progress, ergodi, �t-invariant measure almost every pointis suh that its lifted orbit in the Poinar�e ball has unique limit points in forward andbakward time on the sphere at in�nity, and these limit points are distint. This allowsthe almost everywhere de�nition of a shadowing geodesi whih has the same limits onthe sphere at in�nity as the trajetory. The shadowing geodesis provide the basis for the2



omparison of the dynamis of the given measure to dynamis within the geodesi ow.The semionjugay in Theorem 4.1 is indued by projetion onto shadowing geodesis.Setion 5 ontains an example in whih shadowing geodesis exist almost everywhere asrequired by Theorem 3.2 but they do not exist for a topologially generi point. This showsthe neessity of working in the measure theoreti ategory, even though the dynamis aresmooth. The example also shows that, in general, trajetories are not a bounded distanefrom their shadowing geodesi; this distane is always o(t) by Lemma 2.3.Setion 1: Preliminaries.This setion ontains various de�nitions and results required in this paper. In manyases these are stated only for the situation here, rather than in their greatest generality.The reader is urged to onsult the referenes for proofs and further information.x1.1 Spaes and dynamis. Throughout this paper M is a losed hyperboli man-ifold, i.e. M is ompat without boundary and has a Riemannian metri g on M withurvature identially equal to �1. The universal over of a n-dimensional hyperboli man-ifold is di�eomorphi to the standard Rn. When Rn is equipped with a metri of onstanturvature �1 it is denoted Hn . Depending on the ontext we will use ~M or Hn to denotethe universal over of M. The group of overing transformations in ~M an be identi�edwith a disrete subgroup, isomorphi to �1(M), of the group of isometris of H . Thisgroup ation has a fundamental domain with ompat losure and under the quotient bythe ation the metri on H desends to the hyperboli metri on M .The geodesi ow of the metri g is denoted gt and is de�ned on T1M the unit tangentbundle of the manifold. As a onsequene of the Mostow Rigidity Theorem, a losedhyperboli manifold of dimension three or greater arries a unique hyperboli metri. If Mis a surfae, it arries many hyperboli metris, but their geodesi ows are all topologiallyonjugate ([G℄, [M℄).We shall usually work in a smooth loally trivial �ber bundle p : B ! M with �berF . Letting ~B = F � ~M yields a bundle p : ~B ! ~M whih overs our original bundle, butin general is not the universal over of B.There is another projetion of importane, from overing spaes to bases; � : ~M !Mand � : ~B ! B. For a set Z � B, a tilde indiates its total lift, so ~Z = ��1(Z). Onthe other hand, a single point in ~B will often be denoted ~z, and the onvention is that�(~z) = z.The main dynamial objet here is a C1-ow �t on B, i.e. a ow generated by aontinuous vetor �eld on B. This ow lifts to a ow ~�t on ~B. For a losed hyperbolimanifold M examples of suh ows are:(1) B = M , so that �t is a ow on M .(2) B = T�M or B = T �M and �t is a Euler-Lagrange or Hamiltonian ow, respetively.A related ase is B = T�M � S1 or B = T �M � S1 and the ow is indued by a timeperiodi Lagrangian or Hamiltonian (see [BG℄).(3) If f : M !M is a di�eomorphism isotopi to the identity, the ow �t is the suspensionow, and B is the suspension manifold. Sine f is isotopi to the identity, B isdi�eomorphi to M � S1 and the bundle p : B !M is projetion on the �rst fator.(4) A related example is when N is a surfae and f : N ! N is a di�eomorphism in apseudoAnosov isotopy lass. In this ase �t is the suspension ow. The suspension3



manifold M has a hyperboli struture by a theorem of Thurston, and so (M;�t) isas in example (1).x1.2 Hyperboli Geometry. For proofs and related information see [Be℄, [T℄, or[BKS℄. We shall use two standard models built in Eulidean spae for n-dimensional hy-perboli spae Hn . In both ases d(z1; z2) will denote the hyperboli distane between thetwo points, and jzj will denote the usual Eulidean norm of the point z, i.e. jzj = hz; zi1=2,where h�; �i is the standard Eulidean inner produt. In addition, for a tangent vetor v,kvke denotes the norm in the tangent bundle indued by the Eulidean metri.Given two distint points z; z0 2 H , the notation [z; z0℄ indiates the unique orientedgeodesi segment from z to z0. All geodesis in this paper are oriented and are onsideredboth as subsets of the manifold M and its unit tangent bundle T1M (as well as in ~M andT1 ~M ). The distintion is usually unimportant, but when it is, it will be made expliit.The Poinar�e disk model is denoted Pn or just P if the dimension is left unspei�ed.The spae in this ase is the interior of the Eulidean unit n-ball and the hyperboli metriindues a norm on the tangent bundle given bykvkh = 2kvke1� jzj2 :The origin is always denoted ~0. The unit (n � 1)-sphere that is the Eulidean boundaryof Pn is alled the sphere at in�nity and is denoted S1. A geodesi in this model is anoriented ar of a irle with both ends orthogonal to S1. Eah pair of distint points inS1 determine exatly one suh geodesi and so the set of geodesis in parameterized by(Sn�1 � Sn�1)� fdiagonalg. This spae when endowed with the Eulidean topology andLebesgue measure is denoted G. In partiular, a map de�ned on G is alled measurableif it is Borel measurable. In the Poinar�e disk model the braket notation is extended toinlude [x; x0℄ denoting the geodesi onneting distint points x; x0 2 S1.In the upper half spae model the spae is Un = Rn�1� (0;1) and it has oordinates(x; y) with x 2 Rn�1. The norm on the tangent bundle iskvkh = kvkey :Geodesis are oriented lines and ars of irles orthogonal to the boundary hyper-plane,i.e. to Rn�1� f0g.The half spae model is often onvenient for expliit alulations. In analogy to thetwo-dimensional ase, for a point z 2 Un with z = (x; y), �z = (x;�y) and Im(z) = y.With these onventions: d(z;w) = log( jz � �wj+ jz � wjjz � �wj � jz � wj )sinh(12d(z;w)) = jz � wj2(Im(z)Im(w))1=2osh(d(z;w)) = 1 + jz � wj22Im(z)Im(w) (1:1)4



The �rst lemma will be useful in omparing measures supported on di�erent sides ofa geodesi triangle. It is what one would expet from the \thin triangles" property inhyperboli geometry. No attempt was made to optimize the estimate.Lemma 1.1: If gi : [0; `i℄ ! H for i = 1; 2; 3 with `i < 1 are parameterizations byar length of the sides of a geodesi triangle with `1; `2 > `3 and `1; `2 > 1, and f : H ! Ris a C1-funtion withm = supfjf(z)j + jDzf(v)j : z 2 H ; kvkh = 1g <1then �����Z `10 f(g1(s)) ds� Z `20 f(g2(u)) du����� � m(5 `3 + 1):Proof: The side of the triangle parameterized by gi is alled i, the angle opposite iis �i, and assume that g1(0) = g2(0) is the vertex with angle �3. We may assume withoutloss of generality that `1 � `2, and so �1 � �2 > �3.Let k(s) be the length of the geodesi segment that has one endpoint on 1 at thepoint g1(s), is orthogonal to 1, and the other end of the geodesi segment is on 2. De�neu(s) so that this point is g2(u(s)). Note that k(s) < `3 and an easy argument usinghyperboli trigonometry yields d(u(s))=ds > 1. Let û = `2 � `3 and de�ne ŝ so that itsatis�es u(ŝ) = û, and let k̂ = k(ŝ).NowZ `10 f(g1(s)) ds� Z `20 f(g2(u)) du= Z ŝ0 f(g1(s)) � f(g1(s))d(u(s))ds ds + Z ŝ0 f(g1(s))d(u(s))ds � f(g2(u(s)))d(u(s))ds ds+ Z `1ŝ f(g1(s)) ds� Z `2û f(g2(u)) du:From left to right these integrals are alled I1; I2; I3, and I4.Beause d(u(s))=ds > 1,jI1j �mZ ŝ0 d(u(s))ds � 1 ds = m(û� ŝ) � mk̂ �m`3;where û� ŝ � k̂ by the geodesi triangle inequality. The hyperboli law of sines yieldsk(u) < sinh(k(u)) = sinh(u) sin(�3) = sinh(u) sinh(`3)sinh(`2) � eu+`3�`2where in the last inequality we used the hypothesis `2 > 1. Sine f is Lipshitz withonstant m on the geodesi segment from g1(s) to g2(u(s)),jI2j � mZ ŝ0 k(s)d(u(s))ds ds = mZ û0 k(u) du� m(eû+`3�`2 � e`3�`2) = m(e0 � e�û) �m:5



Finally, jI3 � I4j � jI3j+ jI4j�m(`1 � ŝ + `2 � û)�m(2`3 + k̂ + `3) � 4m`3using the triangle inequality on the geodesi quadrilateral with verties g1(ŝ); g1(`1); g2(`2),and g2(û). tux1.3 Dynamial Coyles. For more information see [HK℄ or [Po℄. The study ofergodi invariant measures is essential for understanding the dynamis of a ow �t. Even ifthe ow lives on a smooth manifold, restriting attention to an invariant measure requiresthe notion of a ow in the measure theoreti ategory.A (measure theoreti) ow is a triple (Z; �; �t), onsisting of a measure spae Z, ameasurable ow �t, and an invariant measure �. The ow is required to be ontinuous onorbits, i.e. the ow onsidered as a map Z �R! Z is measurable in the �rst omponentbut ontinuous in the seond. In the ases of interest here, Z will always have a naturaltopology and we shall always onsider the �-algebra as the Borel sets, so the �-algebra isnot inluded in the notation for a ow.A funtion C : Z �R! R is alled a additive oyle for the ow �t ifC(z; s+ t) = C(z; s) + C(�s(z); t) (1:2)and a sub-additive oyle ifC(z; s+ t) � C(z; s) + C(�s(z); t) (1:3)for all z 2 Z and s; t 2 R. A oyle is alled Lipshitz with respet to the invariant measure� if is uniformly Lipshitz in the seond variable on almost every trajetory. Using (1.2) or(1.3) this is equivalent to the existene of a onstant � > 0 so that for a.e. z, jC(z; t)j � �jtjfor all t. Clearly a Lipshitz oyle satis�es C(z; 1) 2 L1(�) and so Theorem 1.2 belowapplies. Note that the Lipshitz ondition is only required to hold in the t variable. Ingeneral, a Lipshitz oyle C(z; t) will depend only measurably on z. All the variousgeometri oyles de�ned in this paper will turn out to be Lipshitz.The forward average asymptoti value of a oyle isC�(z) = limt!1 C(z; t)tif the limit exists. We shall make frequent use ofTheorem 1.2: (Kingman's Sub-additive Ergodi Theorem) If (Z; �; �t) is aow with � ergodi, and C is a sub-additive oyle for �t with C(z; 1) 2 L1(�), then C�(z)exists almost everywhere and has the onstant valueC�(�) = inft2R+f1t Z C(z; t) d�(z)g (1:4)6



whih in the ase of an additive oyle is equal toC�(�) = Z C(z; 1) d�(z): (1:40)Given a ow �t and a oyle C, let ZC denote the set of points for whih C� exists.Points in ZC will be alled generi for C. Another way of phrasing Kingman's theorem isthat ZC has full measure with respet to any �t-invariant measure for whih C(z; 1) is inL1. In the sequel we shall often be onerned with a �xed ergodi measure, in whih aseZC means just those elements of ZC in the support of the measure.Note that if C is a Lipshitz additive oyle, then C 0(z) := �C�t (z; 0) exists a.e.and is bounded. Di�erentiating (1.2) with respet to t and evaluating at t = 0 yieldsC 0(�s(z)) = �C�t (z; s) and so C(z; t) = Z t0 C 0(�s(z)) ds:Thus for Lipshitz additive oyles Kingman's Theorem redues to the Birkho� ergoditheorem.The asymptotis of oyles in bakwards time will also be needed in the sequel. Notethat if C is a sub-additive oyle for �t, then Ĉ(z; t) := C(z;�t) is one for  t = ��t. Calla sub-additive oyle symmetri if C(�t(z);�t) = C(z; t) for all t. It follows easily from(1.3) that a symmetri oyle is non-negative for all z and t. For a symmetri oyle,Z Ĉ(z; t) d�(z) = Z C(z;�t) d�(z) = Z C(�t(z);�t) d�(z) = Z C(z; t) d�(z) (1:5)where the seond equality uses the fat that � is a �t-invariant measure. Thus dividing byt and using (1:4) yields Ĉ�(�) = C�(�) for an ergodi �. Thus for an ergodi measure �, ageneri z, and a symmetri oyle C, we may writeC(z; t) = C�(�) jtj+ o(t): (1:6)In ontrast, for an additive oyle one always has C(�t(z);�t) = �C(z; t) and so(1:5) with the appropriate sign hanges shows that for an ergodi measure �, a generi z,and an additive oyle C, we may writeC(z; t) = C�(�) t+ o(t): (1:7)It is important to note that for both additive and subadditive oyles the exat form ofthe o(t) term an depend strongly on the hoie of the point z.x1.4 Measure-valued oyles. The de�nition of the rotation measure in x3 makesuse of oyles that take their value in a spae of signed measures. Let X be a ompatmetri spae and M(X) denotes the Banah spae of all �nite signed Borel measures7



on X. Reall that a sequene of measures �n ! � weakly if R f d�n ! R f d� for allontinuous f : X ! R. Given a ow (Z;�t; �) as in x1.3, a funtion N : Z �R!M(X)is alled a measure-valued oyle for �t if for all s; t 2 R and all z 2 Z, N(z; t + s) =N(z; t) + N(�t(z); s) where the sum is the usual sum of signed Borel measures. As withother oyles, we let N�(z) = limt!1 N(z; t)tif the weak limit exists.Given a funtion f 2 C(X;R), then Nf (z; t) := R f dN(z; t) is a real-valued additiveoyle. The existene of the asymptoti average N� of a measure-valued oyle givenin the next lemma follows easily from the existene of the various N�f and the RieszRepresentation Theorem. The lemma is learly not the most general of its type in theliterature. Let 1 : Z ! R be the onstant funtion 1(z) = 1 for all z 2 Z.Lemma 1.3: If N is a measure-valued oyle for �t and � is an ergodi, �t-invariantprobability measure with N1(z; 1) 2 L1(�), then N� exists and is onstant almost every-where.Proof: First note that N1(z; 1) 2 L1(�) implies Nf (z; 1) 2 L1(�) for any f 2C(T1M;R), and so N�f (�) exists by Theorem 1.2. Let � denote the real-valued linearfuntional � : f 7! N�f (�). Now if z is generi for both Nf and N1, then�(f) = limt!1 R f dN(z; t)t� kfk0 limt!1 N1(z; t)t= kfk0N�1 (�):Thus � is bounded and so by the Riesz Representation Theorem there is a measureN̂ 2 M(X) with �(f) = R f dN̂ . Now pik a ountable dense set ff0 = 1; f1; f2; : : :gin C(X;R) and let ZN be the full measure set of points that are generi for all the orre-sponding oyles, i.e. ZN = \ZNfi :So for z 2 ZN , R fi dN(z; t)t = Nfi (z; t)t ! �(fi) = Z fi dN̂for all fi and so N(z;t)t ! N̂ weakly. tux1.5 Semionjugaies, time hanges and invertible oyles. For more infor-mation see [HK℄, [Pa℄ setion 5.1, or [CFS℄. The main strategy of this paper is to omparea given ow on a hyperboli manifold to the geodesi ow. One way this is aomplishedis via a measure theoreti semi-onjugay. Two ows (X; �; �t) and (Y; �; hs) (as de�nedin x1.3) are said to be semionjugate if there is a measure-preserving surjetion f : X ! Ythat takes orbits of �t to those of hs preserving the diretion of the ow, but not neessar-ily the time parameterization. Further, we require that f be ontinuous when restrited8



to orbits. Exept in the ase when the image orbit is periodi, this means that whenrestrited to an orbit in X, f is a homeomorphism onto an orbit in Y . Note however thatf may take many orbits of �t to the same orbit of hs. (The reader is autioned that thereare many variants of this de�nition in the literature going under a variety of names.)There is a new ow �̂s obtained by a time hange of �t that is semionjugate to hsby a time-preserving semionjugay. It will be useful to desribe this expliitly. Assumefor simpliity that (X; �; �t) is aperiodi, i.e. the set of losed orbits has measure zero.Given the map f : X ! Y as above, de�ne A(x; t) as the unique real number withthe property that hA(x;t) Æ f(x) = f Æ �t(x). It is easy to hek that A is an additiveoyle and it is injetive and onto in the seond fator. Thus there is another additiveoyle B(x; s) with A(x;B(x; s)) = s and B(x;A(x; t)) = t. Now de�ne a new ow onX by �̂s(x) = �B(x;s)(x), and then hs Æ f(x) = f Æ �̂s(x), for all s; x, thus hs and �̂s aresemionjugate by a time-preserving semionjugay.The additive oyle A an be used for a time hange beause for �xed z, A(z; �)is a homeomorphism R ! R. Suh a oyle will be alled invertible. Using (1.2) theinjetivity of A(z; �) is equivalent to a monotoniity property. An additive oyle A isalled monotone, if for all � > 0, A(z; � ) > 0 (equivalently, t > s implies A(z; t) > A(z; s)),and semi-monotone if the inequalities are not strit, i.e. A(z; � ) � 0. Note that a monotoneoyle with A�(�) > 0 is invertible.If � is an ergodi probability measure for �t, and the time hanged ow �̂s is on-struted using the invertible Lipshitz oyle A, then the vetor �eld that generates �̂s isobtained by multiplying the generator of �t by 1=A0(z), where A0(z) = �A�t (z; 0). Further,the measure �̂ de�ned by d�̂ = A0(z)K d�;with K = R A0(z) d� is an ergodi, �̂s invariant measure, and is, in fat, the only suhmeasure that is equivalent to �.In x4 a funtion arises that takes orbits to orbits as in a semionjugay, but is notloally injetive on orbits and so does not give rise to a monotone oyle A. However, itis the ase that A is asymptotially monotone in the sense that A� > 0. The next lemmasays that we an alter A in a ontrolled fashion to obtain the required invertible oyle.The alteration of A in (1.8) is usually expressed by saying that A is ohomologous to thealteration Â. As with Lemma 1.3 this is ertainly not the most general result of its typein the literature.Lemma 1.4: If � is an ergodi, invariant probability measure for a ow �t on Xand A is a Lipshitz, additive oyle with A�(�) > 0, then there exists a measurable� : X ! (0;1) suh that Â(x; t) := A(x; t) + �(�t(x)) � �(x) (1:8)is an invertible, Lipshitz, additive oyle for �t with Â�(�) = A�(�).Proof: We proeed in two steps, �rst produing a oyle A1 that is semi-monotoneand then using it to produe Â. 9



Let �1(x) = sups�0A(x; s). Sine A� > 0, �1 is �nite almost surely. Further, it is notdiÆult to hek that �1 is measurable, non-negative, ontinuous on orbits, and thatA1(x; t) := A(x; t) + �1(�t(x)) � �1(x)is a semi-monotone additive oyle.Now let �(x; t) = �1(�t(x)) � �1(x). We laim that � is a Lipshitz oyle with thesame onstant as A, denoted �. Property (1.2) is obvious, and sine �(x;�t) = ��(x; t)it suÆes to assume t > 0. Sine A is ontinuous on orbits, there are s1; s2 � 0 with�1(�t(x)) = A(�t(x); s1) and �1(x) = A(x; s2), and so�(x; t) = A(�t(x); s1) �A(x; s2):Now if t � �s1 then j�(x; t)j � jA(�t(x); s1)j � �js1j � �t. On the other hand, ift < �s1, then using the de�nition of �1, s2 = s1 + t, and sine by (1.2), A(�t(x); s1) =A(x; s1 + t)�A(x; t), we get j�(x; t)j = jA(x; t)j � �t, proving the laim, and also provingthat A1 is Lipshitz.Further, we laim that R �(x; 1) d�(x) = 0 (this would be trivial if �1 2  L1(�), butthat is not proven here). To prove the laim, for n 2 N, de�ne �(n)1 as �(n)1 (x) = �1(x),if �1(x) � n, and �(n)1 (x) = n, otherwise, and let �(n)(x; t) = �(n)1 (�t(x)) � �(n)1 (x). Nowertainly, �(n)1 2 L1(�), and so by the invariane of the measure, R �(n)(x; 1) d�(x) = 0.Sine �(n) ! � pointwise and j�(x; 1)j < �, R �(x; 1)d�(x) = 0 by the bounded onvergenetheorem. So using (1.40), A�(�) = Â�(�).For the seond step, pik  : R! (0;1), supported on [0;1) whih satis�es R  = 1and R s  (s) ds = m <1. Let �2(x) = R10 A1(x; s) (s) ds, and de�neÂ(x; t) := A1(x; t) + �2(�t(x)) � �2(x)= A1(x; t) + Z A1(�t(x); s) (s) ds� Z A1(x; s) (s) ds= Z (A1(x; s + t) �A1(x; s)) (s) ds= Z A1(�s(x); t) (s) ds (1:9)using oyle property for A1 and the fat that R  = 1.For t > 0, sine A1 is Lipshitz, (1.9) implies that Â(x; t) � �t, so Â is Lipshitzalso. Again using (1.9), for �xed � > 0, Â(x; � ) = R A1(�s(x); � ) (s) ds. The integrandis a ontinuous funtion of s whih is nonnegative sine A1 is semi-monotone and positivesomewhere for generi x sine A�1(�) > 0, thus Â(x; � ) > 0, and so Â is monotone. Finally,sine jA1(x; s)j � �jsj, j�2j � �m, thus �2 2 L1(�). Thus R �2(�t(x)) � �2(x) d�(x) = 0,and so Â�(�) = A�1(�) = A�(�). Sine this is positive, Â is invertible. tu10



Setion 2: Geometri oyles.We now restrit attention to ows as in x1.1, namely smooth ows �t on a bundleabove a losed hyperboli manifold M . The motion of orbits in the universal over aredesribed using various geometri oyles.x2.1 The distane oyle. The progress of lifted orbits in the universal over ismeasured by a sub-additive oyle, the distane oyle (see [CF℄ and [K℄). Given z 2 B,pik a lift ~z 2 ~B and let D(z; t) = d(p( ~�t(~z)); p(~z)):Note that this de�nition is independent of the hoie of the lift ~z, and the sub-additiveproperty of D is a diret onsequene of the triangle inequality for the metri d.If a �t-invariant measure � has ompat support (as will always be assumed here),then beause the ow is C1, there is a bound, say �, on the hyperboli norm of the timederivative of a trajetory ~�t(z) when projeted to H . Thus D(z; t) � �jtj for every z inthe support of �, and so D is Lipshitz with respet to �. Note also that D is symmetrias a onsequene of the symmetri property of the metri. Thus by (1.6) for ergodi � andgeneri z we may write D(z; t) = D�(�) jtj+ o(t).The invariant measures of primary interest here represent dynamis where there is netaverage motion around the manifold, i.e. D�(�) > 0. Suh an ergodi measure will be saidto have positive progress for �t.Remark 2.1: There is another natural oyle that measures speed in the over,namely the length oyle. If `(x; t) denotes the hyperboli arlength of the projeted urvep( ~�[0;t℄(~z)), then ` is learly an additive oyle bounded above by D. The asymptotiaverage `� is the average speed on the trajetory (where the norms of veloity vetorsare taken using the hyperboli metri). In general, `� an be stritly less than D�. Todistinguish the properties of an orbit measured by these two oyles, D� is desribed asthe average progress of an orbit in the over rather than the speed of the orbit.x2.2 Limits on the sphere at in�nity. The lemmas in this setion show thatpositive progress measures have the property that generi orbits in the over onvergeto points on the sphere at in�nity. Further, these limits points are distint as t ! 1and t ! �1. The onvergene to a point at in�nity turns out to require muh weakerhypotheses than does the distintness of the forward and bakward limits. The �rst lemmagives only the existene of the limits. The idea for its proof ame from Yair Minsky.Lemma 2.1: If  : [0;1) ! Pn is a smooth path parameterized by arlength andD(t) := d((0); (t)) is suh that exp(�D(t)) is integrable, then (t) ! ! 2 S1.Proof: Sine  is parameterized by arlength, jdD=dtj � 1, and so the integrabilityassumptions imply that D(t) ! 1 as t ! 1. Thus there is a T � 0 suh that t � Timplies (t) 6= ~0.Let � : [T;1℄ ! S1 be the radial projetion of (t) on S1, i.e.�(t) = (t)j(t)j :11



Computing one �nds thath _�(t); _�(t)i = h _(t); _(t)i � h(t); _(t)i2h(t);(t)ij(t)j2and thus k _�(t)ke � k _(t)kej(t)j :A simple alulation using the metri on Pn yields j(t)j = tanh(D(z; t)=2) and by de�ni-tion k _(t)kh = 2k _(t)ke1� j(t)j2 ;and so k _�(t)ke � k _(t)kh2 osh(D(z; t)=2) sinh(D(z; t)=2) = 2eD(t) � eD(t) :Thus the integrability assumptions on D(t) imply that R1T k _�(t)ke is �nite and so�([T;1)) � S1 has �nite Eulidean length. This implies that there is a ! 2 S1 withlimt!1 �(t) = !. Sine D(t) !1, limt!1 (t) = !. tuIf ~�t(~z) is a trajetory of the lifted ow on ~B and p( ~�t(~z)) ! ! 2 S1 then de�ne!(~z) = !. Similarly, de�ne �(~z) as the limit as t ! �1 if that exists. If �(~z) and!(~z) exist and are distint, then the oriented geodesi [�(~z); !(~z)℄ is alled the shadowinggeodesi of the trajetory and is denoted �~z (f. [H℄). The next lemma says that for anergodi, positive progress measure for �t, the shadowing geodesi exists almost everywhere.Lemma 2.2: If � is a �t-invariant probability measure that is ergodi, has ompatsupport, and D�(�) > 0, then there exists a set Z1 � B of full �-measure so that for all~z 2 ~Z1, �(~z) and !(~z) exist and are distint. Further, the maps �;! : ~Z1 ! S1 aremeasurable.Proof: Fix ~z 2 ~ZD and let (t) = p( ~�t(~z)). If ̂(s) is a reparametrization of  by arlength and D̂(s) = d(̂(0); ̂(s)), thenZ 10 exp(�2D̂(s)) ds = Z 10 k _(t)kh exp(�2D(z; t)) dtis �nite beause D(z; t) = D�(�)jtj + o(t) from x2.1 and k _(t)kh is bounded beause  isC1 and � has ompat support. Thus by Lemmas 2.1, !(~z) exists, and similarly, �(~z) doesalso. The funtions � and ! are measurable beause they are onstruted as the a.e. in zlimit as t! 1 of a funtion ontinuous in ~z and t. It remains to show that �(~z) 6= !(~z)for typial z. For this another oyle is required.Fix x 2 S1. The family of horospheres tangent to S1 at x an be given a param-eterization Hx(r) with r 2 R whih has the property that d(Hx(r);Hx(s)) = jr � sj. Asa normalization assume that Hx(0) ontains the origin and as r ! 1, the horospheresonverge to x. If y 2 Hx(r) the Busemann funtion based at x is de�ned as �x(y) = r12



(this de�nition is slightly non-standard, see [Bu℄). Standard properties of the horospherefamily yield that d(y;Hx(s)) = jr � sj = j�x(y) � sj, and this distane is realized by ageodesi segment that is orthogonal to both Hx(r) and Hx(s).Now de�ne C(z; t) = �!(~z)(p( ~�t(~z))) ��!(~z)(p(~z));where ~z is some hoie of a lift of z. Clearly C is an additive oyle for �t whih measuresthe progress of orbits in the diretion normal to the horospheres. In addition, the de�nitionis independent of the hoie of lift ~z and the standard horosphere properties yield thatjC(z; t)j � D(z; t) for all t, and so C is a Lipshitz oyle and Theorem 1.2 applies.Let Z1 = ZD \ ZC . For z 2 Z1 by (1.7) D(z; t) = 1jtj+ o(t) and C(z; t) = 2t+ o(t)where by assumption 1 > 0. We next establish the laim 2 = 1 using the upper halfspae model, U. Fix a z 2 ~Z1 and use an isometry that sends P to U, p(~z) to (~0; 1), and!(~z) to 1.Let (t) = p( ~�t(~z)). By onstrution (0) = (~0; 1). Write the oordinates of (t) as(K(t);H(t)) 2 Rn�1 � R+. For the moment will suppress the dependene of K, H andvarious oyles on z and t. With this onvention we have C = (�1)Æd�(K; 1); (K;H)�with Æ = 0 when H � 1 and Æ = 1, otherwise, and D = d�(~0; 1); (K;H)�.From the distane formulas (1.1),H = exp(C) = exp(2t+ o(t)) (2:1)osh(D) = 1 + jKj2 + (H � 1)22H = jKj22H + H2 + 12H (2:2)and the Cauhy-Shwarz inequality yields1H djKjdt = 1H dhK;Ki1=2dt = 1H hK; _KihK;Ki1=2 � 1H k _Kke = k _kh <1: (2:3)If 2 < 0, then using (2.1) and (2.3), R10 k _Kke is �nite. Thus, H(t) is dereasing andK(t) is bounded, and so limt!1 (t) annot be 1 as assumed. On the other hand, if2 � 0, (2.3) implies lim sup(1=t)jK(t)j � 2, and so (2.2) gives 1 � 22 � 2 = 2. Butsine jC(z; t)j � D(z; t), j2j � 1, and so 2 = 1 > 0 as laimed.To show that �(~z) 6= !(~z) = 1, we now have 2 > 0 so (2.1) and (2.3) imply thatH(t) ! 0 as t! �1 and R 0�1 k _Kke is �nite, so limt!�1 (t) 6= 1. tuRemark 2.2: The horoyle ow on hyperboli surfaes makes lear the neessity ofthe positive progress hypothesis in order to get a shadowing geodesi. The horoyle owhas a unique ergodi invariant measure, all it �. Using the upper half plane model U2, themembers of the horoyle family of 1 are the horizontal lines y = . These yield generitrajetories of the horoyle ow that projet to (t) := (t; ). The distane oylestarting at z = (0; ) is D(t) = d((0; ); (t; )) = 2 log((pt2 + 4 + t)=2) using the formulas(1.1). Thus the hypothesis of Lemma 2.1 holds, and indeed � and ! both exist. Howeverthey are equal, whih is in agreement with the fat that D�(�) = 0 and so the hypothesesof Lemma 2.2 are not satis�ed. 13



Remark 2.3: If a lifted trajetory is suh that !(x) exists then the orbit of !(x)under the dek group as a subset of the sphere at in�nity S1 is a topologial invariantof the trajetory. This invariant has been studied in some detail for the ase of ows onhyperboli surfaes. See Setion 6.2 of [ABZ℄ and the referenes therein.x2.3 Projetion and asymptotis. Lemma 2.2 says that the generi point ofa positive progress measure has a shadowing geodesi. The next lemma desribes theasymptotis of the distane from this geodesi and of the projetion onto it. Given ageodesi and point in H , hyperboli orthogonal projetion sends the point to a point onthe geodesi. To get an image point in the unit tangent bundle de�ne � : G�H ! T1H via�(�; z) = (x; v) where x is the orthogonal projetion of z onto � and v is the unit vetortangent to � at x. Note that � is ontinuous when G is given the topology desribed inx1.2.Now �x a measure � as in Lemma 2.2. For ~z 2 ~Z1 from that lemma, let �~z be theshadowing geodesi [�(~z); !(~z)℄ and de�ne � : ~Z1 ! T1 ~M via �(~z) = �(�~z; ~z). Note that� is equivariant (i.e., it desends to a map Z1 ! T1M that is also alled �), is measurable(using Lemma 2.2), and takes orbits of ~�t to those of ~gt.We need two oyles whih are de�ned for z 2 Z1. Let �(~z) = d�p(~z);�~z� =d�p(~z); p(�(~z))�, and B(z; t) = �(~�t(~z)) � �(~z). Thus B is an additive oyle thatmeasures the progress of the orbit though ~z in a diretion orthogonal to its shadowinggeodesi. The projeted progress onto the shadowing geodesi is measured by an additiveoyle A de�ned as follows. Fix a parameterization by arlength for eah geodesi in H .The parameterization is used to add and subtrat elements on the geodesis. Given z 2 Z1and t 2 R, let A(z; t) = �( ~�t(z)) � �(z), or equivalently, A(z; t) is the unique s 2 R with~gs(�(z)) = �( ~�t(z)).Note that both A and B are measurable. Further, sine hyperboli orthogonal pro-jetion onto a geodesi ontrats tangent vetors, jA(z; t)j � D(z; t) for all z; t. By thetriangle inequality, B(z; t) � D(z; t) + jA(z; t)j. Thus sine D is a Lipshitz oyle, bothA and B are also. The following proposition says that the rate of motion projeted to theshadowing geodesi is the same as the progress of the motion and that the distane awayfrom the shadowing geodesi grows at most like o(t).Lemma 2.3: With � as in Lemma 2.2 and the oyles A, B and D as above,A�(�) = D�(�) and B�(�) = 0.Proof: We will use the upper half spae model, and let Z2 = Z1\ZA\ZB with Z1 asin Lemma 2.2. Fix a ~z 2 ~Z2. Using an isometry we may arrange !(~z) = 1 and �(~z) = ~0,and so �~z = fx = ~0g. We may also assume that (0) = (L; 1) for some L 2 Rn�1. Callthe oordinates of (t) = (K(t);H(t)) 2 Rn�1 � R+. Note that !(~z) = 1 implies thatA(z; t) !1.Again we suppress dependene of oyles and oordinates on z and t. Hyperboliorthogonal projetion onto �~z is denoted �̂. In Eulidean oordinates �̂ is partiularlysimple, �̂((0)) = (0;p1 + jLj2) and �̂((t)) = (0;pjKj2 +H2). Note that A(z; t) !1implies the existene of a T > 0 so that t > T implies �̂((t)) > �̂((0)). Heneforthassume that t > T . 14



Letting B0 = d�(0); �̂((0))� = d�(0);�~z� and � is as above,A = d��̂((0)); �̂((t))�B = �((t)) �B0D = d�(0); (t)�:Using the distane formulas (1.1),osh(�) = pjKj2 +H2HeA = s jKj2 +H2jLj2 + 1 :Solving yields H = eAosh(�)p1 + jLj2jKj = eA tanh(�)p1 + jLj2:From (2.3), 1H djKjdt is bounded and so omputing, seh(�) _� + sinh(�) _A is bounded, andso _A < ksinh(�) � _�sinh(�) osh(�) (2:4)for some onstant k.Now using (1.6) and (1.7) we may write A = 1t + o(t), B = 2t + o(t) and D =3jtj+ o(t) with 3 > 0 by assumption. If 2 6= 0, sine �((t)) = B(z; t)�B0, (2.4) yieldsthat Z 10 _A <1ontraditing the fat that A(z; t) ! 1, and thus 2 = 0. Finally note that the distaneformulas (1.1) also yield thatosh(D) = 1 + jK� Lj2 + (H � 1)22Hand so 1 = 3 as required. tuRemark 2.4: Given � > 1 and � > 0, a urve  : R! P is alled a (�; �)-quasigeodesiif ��1(d� )� � � d((); (d)) � �(d� ) + �for all [; d℄ in the domain of . A quasigeodesi always has a shadowing geodesi � andthere is a onstant k depending only on � and � so that  is within a distane k of �(see [GH℄ or [CDP℄). This implies that near S1 a quasigeodesi lies in a one with vertexat its limit point. For a generi point of an ergodi positive progress measure Lemma 2.215



ensures the existene of shadowing geodesi for the trajetory through the point. However,in general, the trajetory will not be a quasigeodesi, and the distane from the shadowinggeodesi may beome unbounded while still being o(t) as required by Lemma 2.3. In theexample of x5 this happens for almost every point for an ergodi measure. Rather thanbeing ontained in a one based on S1, the envelope of the trajetories are tangent to thesphere at in�nity.Setion 3: The rotation measure.x3.1 De�nition of the rotation measure. We give two equivalent de�nitions ofthe rotation measure, one in the base and the other in the over. Fix z 2 B and t 2 Rand let G be the oriented geodesi segment that is homotopi with �xed endpoints to theprojetion of the orbit segment starting at z and owing for time t, i.e. to p(�[0;t℄(z)). Thelift of G to T1M is denoted G0 and M(z; t) is the uniformly distributed measure supportedon G0 that has total mass equal to the hyperboli length of G. Note that this length isD(z; t), the distane oyle. The rotation measure is�(x) = limt!1M(z; t)t (3:1)if the weak limit exists.For the seond de�nition, �x a lift ~z to ~B of z and let ~G = [p(~z); p( ~�t(~z))℄ and ~G0 itslift to T1 ~M . Now let M(z; t) = ��(�) where � is the ar length measure on ~G lifted to ~G0.The rotation measure is one again de�ned as in (3.1).Note that if the rotation measure exists it is an invariant measure for the geodesi owgt. It is in general not a probability measure, but rather has total mass equal to D�(z).x3.1 Existene of the rotation measure. If M(z; t) were an measure-valued,additive oyle, then Lemma 1.3 would immediately give the existene of the rotationmeasure almost everywhere. However, it does not have the appropriate additive properties,but it is asymptoti to the measured-valued oyle de�ned as follows.Given z 2 Z2 with Z2 as in the proof of Lemma 2.3 and t 2 R, let N(z; t) be thesigned uniformly distributed measure on the segment of the geodesi ow g[0;A(z;t)℄(�(~z))(this orbit segment has as its endpoints �(~z) and �( ~�t(~z))). The total mass of N(z; t) isthusA(z; t). Now learly N(z; t) is a measured valued oyle for �t andN1(z; 1) = A(z; 1).Thus if � has ompat support, N1(z; 1) 2 L1(�) and so using Lemma 1.3, the weak limitN�(z) exists on a full measure set denoted ZN . The next lemma shows that these limitsare the same as those for the rotation measure �. In partiular, even though N(z; t) is asigned measure, the limit N� is a ordinary (i.e. non-negative valued) measure.Proposition 3.1 Given ergodi � as in Lemma 2.3, then for almost every z, �(z) =N�(z).Proof: Fix a z 2 Z3 := Z2 \ ZN where Z2 is as in Lemma 2.3 and ZN as above. Weshall show that N(z; t)t � M(z; t)t ! 016



weakly. It suÆes (see Theorem 7.1 in [Bi℄) to show that for any C1 funtion f : T1M ! R,��R f dN(z; t)t � R f dM(z; t)t ��! 0: (3:2)Formula (3.2) is proved by working in the overing spae H . Let f also denote the liftof f to T1 ~M ! R and �x a lift ~z, and t > 0 large enough to satisfy onditions given below.Let (t) = p( ~�t(~z)), � = �~z, and � be a parameterization of [(0); (t)℄ by arlength.Let A, B and D be the oyles de�ned in x2 and drop the dependene of oyles, et.on z and t. With this onvention, � : [0;D℄ ! H with �(0) = (0), �(D) = (t), andk _�kh � 1. Also, let � be a parameterization of [�((0)); �((t))℄ � � by arlength, andso � : [0; A℄ ! U has �(0) = �((0)), �(A) = �((t)), and k _�kh � 1. Let s and u be theparameters of � and � respetively. De�ne the length of the geodesi segment [�((0)); (t)℄to be L(t) and let Æ : [0; L℄ ! [�((0)); (t)℄ be parameterization by arlength.Sine � is positive progress, Lemma 2.3 yields A�(�) = D�(�) > 0 and B�(�) = 0.Thus for all suÆiently large t, A(t); L(t) > B(t), and L(t);D(t) > d((0); �((0)) := B0,and A(t); L(t);D(t) > 1 also. Thus expressing the left hand side of (3.2) in oordinates inthe over1t �����Z A0 f(�(s)) ds � Z D0 f(�(u)) du������ 1t �����Z A0 f(�(s)) � Z L0 f(Æ(v)) dv�����+ 1t �����Z L0 f(Æ(v)) dv � Z D0 f(�(u)) du������ 1t m(5(B +B0) + 2)Where the last inequality uses Lemma 1.1. The onstant m as de�ned in that lemma is�nite beause f is the lift of a C1-funtion on the ompat manifold T1M . Thus sineB = o(t), (3.2) follows. tuProposition 3.1 immediately yields the main existene theorem for the rotation mea-sure.Theorem 3.2: If �t is a C1-ow on B and � is an ergodi, �t-invariant probabilitymeasure with ompat support and D�(�) > 0, then the rotation measure �(z) exists almosteverywhere and has a onstant value denoted �(�).Setion 4: Properties of the rotation measure.x4.1 Semionjugay and the rotation measure. The rotation measure �(�) anbe given additional dynamial meaning by onneting its behavior as an invariant measureof the hyperboli geodesi ow with the dynamis of the �t-invariant measure �. Thisonnetion is provided by a measure theoreti semi-onjugay indued by the projetion �from a generi orbit to its shadowing geodesi. Although � takes �t-orbits to gt-orbits, itis perhaps not loally injetive on orbits; it thus does not give a semionjugay. Informally,the diÆulty is that �t-orbits are only asymptotially in the same diretion as the shad-owing geodesi; they ertainly an travel forward and bakwards in the diretion of the17



geodesi . In more preise language, the oyle A(z; t) whih measures the signed lengthof the projetion of the orbit onto the shadowing geodesi an ertainly be negative forsome t. However, A�(�) = D�(�) > 0 for positive progress measures � by Lemma 2.3, andso Lemma 1.4 provides a monotone oyle that \straightens out" � into a semionjugay.Two measures are said to be equivalent if they are mutually absolutely ontinuous;this is denoted �1 � �2. If � is an invariant measure for the ow �t, the h�(�t) denotes itsmetri entropy.Theorem 4.1: Let �t be a C1-ow on B, � an ergodi, �t-invariant probabilitymeasure with ompat support and D�(�) > 0. The geodesi ow gt on T1M is indued bya hyperboli metri and the projetion � : Z3 ! T1M is de�ned in x2.3 with Z3 the fullmeasure set de�ned in Proposition 3.1. If � is the measure �(�)=D�(�) de�ned on T1Mthen(a) (B; �t; �) is semi-onjugate to (T1M;gt; �),(b) � is the unique, ergodi, gt-invariant probability measure equivalent to ��(�),() h�(�t) � h�(gt)=D�(�).Proof: A semionjugay result is proved �rst. Reall the Lipshitz oyle A de�nedabove Lemma 2.3. Lemma 2.3 says that A�(�) = D�(�), and the latter is positive byhypothesis. Thus by Lemma 1.4 there is an invertible Lipshitz oyle Â with A�(�) =Â�(�) with Â de�ned almost everywhere byÂ(z; t) = A(z; t) + �(�t(z)) � �(z)for a measurable, real valued � that is ontinuous on orbits.De�ne �̂ : Z3 ! T1M as �̂(z) = g�(z)(�(z)) = �(z) + �(z) where in the last formulawe add on an oriented geodesi using a parameterization by ar length. The de�nition ofA yields that � Æ �t(z) = gA(z;t) Æ �(z), and so �̂ Æ �t(z) = gÂ(z;t) Æ �̂(z), for all z and tSine Â is monotone, as desribed in x1.5, it may be used to de�ne a time-hanged ow�̂s with �̂�̂s(z) = gs�̂(z), for all z; s. There is a unique ergodi �̂s-invariant probabilitymeasure �̂ that is equivalent to �. Thus �̂�(�̂) is a gt-invariant, Borel probability measurethat is ergodi sine �̂ is. Now de�ne �̂ = �̂�(�̂), and note that (a) has been proven with �̂in plae of �. To prove (b) with the same replaement we must show that �̂�(�̂) � ��(�)(uniqueness follows from ergodiity).Sine � is �t-invariant, a set V has �(V ) = 0 if and only if its saturation R � V :=f�t(x) : t 2 R; x 2 V g has measure zero. Now for every z, �(z) and �̂(z) lie on the same �ttrajetory, and thusR���1(U) = R��̂�1(U) for any Borel U � T1(M). Thus �̂�(�) � ��(�).But � � �̂ sine they orrespond under a time hange, thus �̂ = �̂�(�̂) � �̂�(�) � ��(�).To omplete the proof of (a) and (b) we must show that �̂ = �(�)=D�(�). It isstandard that sine �̂ is ergodi for gt, there is a full �̂-measure set X � T1M so that x 2 Ximplies that the unit mass measures distributed uniformly with respet to time on the orbitsegments g[0;s℄(x) onverge weakly to �̂ as s!1. Thus sine �̂ = �̂(�̂), the full �̂-measureset �̂�1(X) is suh that z 2 �̂�1(X) implies that �̂(z) = x has this property. Thus for suha z, if Q(z; s) is the measure on the geodesi segment [�̂(z); �̂(�̂s(z))℄ = [�̂(z); gs(�̂(z))℄that is uniformly distributed with respet to ar length, thenQ(z; s)s ! �̂18



weakly.Now let z 2 �̂�1(X) \ Z3. By onstrution, Q(z; s(z; t)) �N(z; t), with N as in x3,has total mass between 0 and �(�t(z)) � �(z). Lemma 1.4 says that Â�(�) = A�(�) andso (1.8) implies that �(�t(z))=t! 0 as t!1. Thus weakly,Q(z; s(z; t))t ! N�(z) = �(�)using Proposition 3.1. But alsos(z; t)t = Â(z; t)t ! Â�(�) = A�(�) = D�(�)by Lemmas 1.4 and 2.3. Thuslimt!1 Q(z; s(z; t))t = limt!1 s(z; t)t Q(z; s(z; t))s(z; t) = D�(�) �̂;proving that �̂ = �(�)=D�(�). The entropy statement in () follows from the formula forentropy hange of a ow under a time hange. tuRemark 4.1: If X is a ompat invariant set onsisting of quasigeodesis with thesame onstants, then an alteration of the proof of Theorem 4.1 yields a ontinuous semi-onjugay onto a ompat invariant subset of the geodesi ow. This onstrution is donein [BG℄ for the ase of Euler-Lagrange systems whose on�guration spae is a hyperbolimanifold (eg. the geodesi ows of a Riemannian metri).x4.2 The rotation measure as a funtion. To view the rotation measure � asa funtion its domain and odomain must be spei�ed. If for a ontinuous ow �t on ametri spae X, E(�t;X) denotes the spae of ergodi, �t-invariant probability measureswith ompat support, then the domain of � onsists of the positive progress measures inE(�t;B). Theorem 4.1 says that the odomain of � onsists of the ergodi measures of thegeodesi ow. It is usually more onvenient to work with probability measures, so �(�) isonsidered a pair onsisting of \diretion" and \magnitude" with the diretion given byan invariant probability measure of the geodesi ow. Aordingly (with an alteration ofnotation to avoid onfusion) let�̂(�) = ( �(�)D�(�) ;D�(�)) 2 E(gt; T1M) �R:To inlude the ase of zero progress measures, de�ne �̂(�) = 0 if D�(�) = 0. Thus ifÊ(gt; T1M) := (E(gt; T1M) �R)[ f0g;then �̂ : E(�t;B) ! Ê(gt; T1M).The map �̂ an be extended to the set of all �t-invariant measures using the ergodideomposition. This must be approahed with aution if one of the measures in the19



deomposition of the measure m has zero progress. In this ase it is no longer guaranteedthat the generi point for the measure m has a shadowing geodesi despite the fat thatthe extended funtion �̂(m) has nonzero value.Also note that the rotation measure is not invariant under topologial onjugay of theow. This is beause the average speed an be di�erent for a pair of measures orrespondingunder the onjugay. However, the �rst omponent of the image of �̂ is onjugay invariant,and the neessary adjustment to the seond omponent is easily omputed using the timehange oyle.x4.3 The homology rotation vetor. In this setion we show that the rotationmeasure is a generalization of the homology rotation vetor in the sense of (4.1) below.The homology rotation vetor goes bak to Shwartzman ([S℄) who alled it an asymptotiyle, beause it gives a dynamial meaning to elements of real homology with \irrationalslope". He de�ned the rotation vetor for individual points, and pointed out that Birkho�'sErgodi Theorem implies that the generi points for an ergodi measure all have the samerotation vetor. This allows the assignment of a real homology lass to an ergodi invariantmeasure. If one onsiders the ow and invariant measure as an oriented lamination with atransverse measure, then this homology lass orresponds to the geometri urrent of themeasured lamination ([RS℄).We reall the de�nition of the homology rotation vetor in the ontext used here. Pika de Rham basis for H1(M ;R) ' R�, where � is the �rst Betti number of M , and let thelosed one-forms �1; �2; : : : ; �� represent the basis elements. Given z 2 B and t 2 R,de�ne S : B �R! R� omponent-wise as(S(x; t))i = Zp(�[0;t℄(z)) �i:The de�nition depends on the hoie of basis for H1(M ;R), but not on the one-formsrepresenting the hosen basis. It is lear that S is a vetor-spae-valued, additive oyle.If S�(z) 2 H1(M ;R) ' R� exists it is alled the homology rotation vetor of z under theow �t. Roughly speaking, the diretion of the vetor S�(z) is the diretion of the motionof the orbit around the manifold as given in homology, and the magnitude of the lass isthe speed of the orbit (or more properly, the rate of progress in the universal free Abelianover, f. Remark 2.1 about `� vs. D�). If � is an ergodi invariant measure with ompatsupport, then by Theorem 1.2, S� exists almost everywhere and has onstant value denotedS�(�). Thus as a funtion, S� : E(�t;B) ! R�.If � is a ergodi gt-invariant probability measure on T1M , we may make the analogousde�nition of a homology rotation vetor under the geodesi ow. To prevent onfusion theR�-valued oyle in this ase is alled T instead of S, thus T � : E(gt; T1M) ! R�. Thismaybe extended in the natural way to a funtion de�ned on the range of �̂ asT̂ : Ê(gt; T1M) ! R� de�ned by T̂ (�; r) = rT �(�) and T (0) = 0.The preise manner in whih the rotation measure extends the homology rotationvetor is expressed by T̂ Æ �̂ = S�: (4:1)20



To prove this note that the losed one-forms �i may be treated as maps T�M ! R thatare linear on �bers. These maps restrit to ontinuous funtions on T1M . Thus for� 2 E(gt; T1M) the Birkho� ergodi theorem yields that(T �(�))i = Z �i d�: (4:2)Sine the one-forms are losed, the integral of �i over the urve segment p(�[0;t℄(z))is the same as the integral of �i over the geodesi segment that is homotopi to thisurve segment rel endpoints. Reall that the measure M(z; t) de�ned in x3 is uniformlydistributed with respet to ar length on this urve segment segment. Thus if z is generifor S and M and interpreting the one-forms as �i : T1M ! R in the seond integral,(S�(�))i = limt!1 1t Zp(�[0;t℄(z)) �i = limt!1Z �i dM(z; t)t = Z �i d�(�) (4:3)using Proposition 3.1.For � 2 E(�t;B), the de�nition of �̂ and (4.2) yields(T̂ (�̂(�))i = (D�(�) T �(�(�))D�(�) )i = Z �i d�(�):By (4.3) this is (S�(�))i, proving (4.1).Setion 5: Examples and Appliations.This setion gives an example that illustrates various results and de�nitions of theprevious setions. The justi�ations of many statements are left for the reader, and knowl-edge of basi de�nitions and onstrutions from dynamial systems theory is assumed. Foran introdution to this material see [HK℄, [Fk℄ or [Ro℄. The analysis of the example makesuse of various results about Cayley graphs of the fundamental groups of hyperboli surfaesembedded as equivariant trees in P2, random walks on these trees, subshifts of �nite type,and the symboli oding of geodesis. Most of this material is surveyed in [BKS℄ (see also[S℄). For an introdution to random walks on trees see [PL℄ or [Wo℄. Basi results aboutsymboli dynamis are well overed in [Kt℄.The main example is a di�eomorphism � of T , the two-dimensional torus minus anopen disk. Note that T is a hyperboli manifold. It is not losed but it an be embeddedin a losed genus two surfae, and � extended as the identity outside the embedded opyof T . We fous mainly on the dynamis of � on T , bringing the ambient surfae intoplay only when neessary. The relevant dynamis of � lie in a ompat, invariant, tran-sitive hyperboli set 
. The Markov partition for 
 has retangles that are labeled withgenerators of �1(T ) (as in [W℄) whih desribe the motion of the box under one iterate.Thus the symboli desription of an orbit desribes the motion of the orbit around T , orequivalently, in the universal over ~T .The symboli desription an also be used to generate a walk on the Cayley graph of�1(T ) ' F (a; b), the free group on two generators. When this graph is embedded as anequivariant spine T of ~T , the intrinsi geometry of the graph is losely related to the21



Figure 1: (counterclockwise from the upper left): (a) One lift of (b). (b) The image of the rectangle S under the map    . (c) The projection of (d). 
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ambient hyperboli geometry, and walks on the graph shadow the lifted orbit of � withthe same symboli oding. Thus the relationship of the dynamis of � on 
 to the am-bient hyperboli geometry an be analyzed using the symboli desription. In partiular,symboli analogs of the various geometri funtions and oyles of the previous setionsan be de�ned and omputed within the symboli framework.Although this setion fouses on a single example, a similar (but more ompliated)analysis an be given for a muh wider lass of maps, for example, for Axiom A di�eomor-phisms isotopi to the identity on a hyperboli manifold.x5.1 The di�eomorphism and its Markov partition. The onstrution is aversion of the standard one for Axiom A di�eomorphisms. Let S be a square embedded inthe interior of T . The di�eomorphism � : T ! T is isotopi to the identity and strethes Sand lays it over itself in a olletion of linear strips. We fous attention on �ve of these witheah onsisting of points that have traversed T along the same element of the fundamentalgroup, these elements being the generators a and b, their inverses �a and �b, and the identityelement e. Figure 5.1(a) shows the image of S in T . Figure 5.1(b) shows the image of onelift of S under the lift of � to the universal over.The invariant set of interest is de�ned by
 = \n2Z �n(S):Note that 
 is an invariant Cantor set but it is not isolated in the nonwandering set,and so it is not a basi set. However its dynamis an be desribed symbolially asfollows. Fix a hyperboli metri on T with geodesi boundary suh that the geodesis inthe free homotopy lasses of a and b both have length one. Let ~T � P2 be a geometriuniversal over of T , i.e. ~T modulo overing transformations is isometri to T with thehosen hyperboli metri. The overing transformation that orresponds to an elementw 2 �1(T ) is denoted �w. Thus the dek group is generated by a pair of isometries of P2,�a and �b. Note that elements in �1(T ) are written left to right, while omposition of dektransformations are written in the other order. Thus, for example, �ab = �b Æ �a. Treatingthis representation of �1(T ) as a Fuhsian group leads to the name limit set for the portionof the topologial frontier of ~T that lies in S1.Fix a fundamental domain in ~T and an injetive lift of S ontained in that fundamentaldomain. Denote this distinguished upstairs opy of S as Se. The other lifted opies ofS are labeled by the dek transformation that takes Se to them, so for eah w 2 �1(T ),Sw := �w(S) (see Figure 5.1b). The lifted opy of 
 ontained in Sw is denoted 
w. Let ~�be the lift of � that extends to the identity on the limit set in S1. The Markov retanglesare �rst de�ned in the over by hoosing s 2 fa; �a; b;�b; eg and letting ~Rs denote the set ofpoints in Se that are mapped into Ss. Thus ~Rs = ~��1(Ss) \ Se. The Markov retanglesRs � S are the projetions of the ~Rs.With this Markov partition the symboli model of � restrited to 
 is the olletion �of all two-sided sequenes with elements taken from the set fa; �a; b;�b; eg, � = fa; �a; b;�b; egZ :De�ne � : 
 ! � as the itinerary map with respet to the partition, i.e. s is the ithsymbol in the sequene �(x) exatly when �i(x) is in the subretangle Rs. The map � is ahomeomorphism that onjugates � restrited to 
 to the shift map Æ on �; Æ Æ � = � Æ�j
.23



(The shift on a symbol spae is denoted Æ here rather than the usual � to avoid onfusionwith the projetion � de�ned in x2.3.)The labeling of the Markov retangles was hosen so that the symboli desription ofan orbit would desribe the motion of its lift in the over. The �rst i-steps of this motionare desribed by the �rst i-letters in the symbol sequene, whih is onsidered as an wordin �1(T ). Aordingly, for a sequene s 2 �, and a non-zero integer i, w(s; i) 2 �1(F ) isde�ned by w(s; i) = s0s1 : : : si�1 if i > 0w(s; i) = �s�1�s�2 : : : �si if i < 0where an overbar denotes the inverse, and let w(s; 0) = e. If x 2 
 is oded by the sequenes = �(x) and ~x 2 �e is its lift, then ~�i(~x) 2 Sw(s;i), for all i.This desription makes it lear that eah lifted orbit from 
 is behaving like a disretewalk in whih eah step onsists of a jump into one of the four adjaent fundamentaldomains, or else a pause step in whih the orbit stays in the same opy of S. Other typesof walks orrespond to various invariant subsets of 
. Using the onjugay � these subsetsan be de�ned in the symbol spae �. The standard walks without pauses orrespond tosequenes whih do not ontain the symbol e. The olletion of these is �0 := fa; �a; b;�bgZ ��, and the orresponding subset of 
 is 
0 = ��1(�0). Walks without baktraking, alsoalled self-avoiding walks, orrespond to sequenes from �0 where the transitions a ! �a,�a ! a, b ! �b, and �b ! b are not allowed. The olletion of these sequenes is denoted �̂and is a subshift of �nite type with transition matrix0B�1 0 1 10 1 1 11 1 1 01 1 0 11CA :Let 
̂ = ��1(�̂). Note that the allowable �nite bloks of symbols for �̂ are the same asthe redued words in F (a; b).x5.2 The equivariant tree, walks and symboli oding. This subsetion for-malizes the onnetion between the dynamis of ~�, walks, and symboli oding using atree T � ~T de�ned as follows. Let p be the �xed point of � that is oded by e1. Adjustthe position of S and p so that p lies at the intersetion of the two losed geodesis in Tthat represent the free homotopy lasses of the two generators a and b, respetively. Thetree T is de�ned as the total lift of this pair of losed geodesis. It is an in�nite simpliialtree with four edges oming into eah vertex. For eah w 2 F (a; b) the vertex ontainedin Sw is denoted vw. The edges of T onnet just those verties in adjaent fundamentaldomains and are geodesi segments with length one. The tree T an also be identi�ed withthe Cayley graph of �1(M) ' F (a; b) (see Figure 5.2b).If we de�ne the distane dT (vw1 ; vw2) between verties in T as the hyperboli lengthof the unique topologial ar embedded in T that onnets vw1 and vw2 , then this distaneis the same as the distane between the two elements w1 and w2 in the word metri onF (a; b), namely the length of the redued word �w1w2. In symbols, dT (vw1 ; vw2) = `( �w1w2),where for w 2 F (a; b), `(w) denotes the redued length of w, i.e. the number of generators24



in the shortest word representing w. A lassi result of Milnor [Mi℄ says that this distanein T is equivalent to the hyperboli distane in ~T in the sense that,1dT (vw1 ; vw2) � d(vw1 ; vw2) � 2dT (vw1 ; vw2) (5:1)for some positive onstants 1 and 2.To onnet walks on T to the dynamis of � we shall need to onsider two-sided(i.e. indexed by Z) walks beause � is invertible. It is also onvenient to just onsiderstandard walks without pauses; these orrespond to sequenes from �0. The fous inthis subsetion is on individual walks; measures on the olletion of walks will be onsid-ered in the last subsetion. A walk on T is an bi-in�nite sequene of adjaent verties: : : ; vw�2 ; vw�1 ; vw0 ; vw1 ; vw2 ; : : :. The vertex vw0 (or sometimes w0) is alled the root ofthe walk. The diretion of eah step is given by �wiwi+1 whih is an element of the setfa; �a; b;�bg. Thus the walk is alternatively spei�ed by the root w0 and the sequene s 2 �0with si = �wiwi+1. If a walk with root w0 and the point ~x 2 Sw0 have the same symbolidesription from �0, then at eah step (iterate of ~�) they are at most the diameter of Sapart. In dynamial language, this says that the walk with root w0 desribed by the sym-bol sequene s is a pseudo-orbit for ~� whih is shadowed by the orbit of the lift ~x 2 Sw0of the point x 2 
 with �(x) = s.The next step is to identify the symboli analog of the geodesi ow using walks onT . A walk with sequene t 2 �̂ is alled a geodesi walk beause it has no baktrakingand always onverges to an � and ! limit points in S1. Sine a geodesi walk is learlyontained in a quasigeodesi (see Remark 2.4), the walk is a uniformly bounded distaneaway from the unique hyperboli geodesi in P2 whih has the same limit points on S1.Further, this bound is the same for all geodesi walks. A point on a symboli geodesi isspei�ed by the root of a geodesi walk. Moving the root to an adjaent vertex on the walkrequires a shift of the speifying sequene t. Thus the disrete dynamial system (�̂; Æ)is the symboli analog of the geodesi ow on T . Note that elements of �̂ orrespond topoints on geodesis, the geodesi itself is represented by the orbits of points. In algebrailanguage, a bi-in�nite word using the symbols a; �a; b;�b uniquely spei�es a geodesi in T ,but the spei�ation of a point on this geodesi requires an expliit numbering of elements,i.e. the insertion of a \deimal point".A topologial onjugay between the geodesi ow and the suspension ow of (�̂; Æ)makes the orrespondene more preise. Sine T has boundary, the meaning of \geodesiow" must be lari�ed. Consider T as embedded in a losed genus two surfae M with ahyperboli metri that restrits to the hosen one on T . Let X onsist of all the geodesis ofM that are wholly ontained in T inluding the boundary geodesi with both orientations.Then X as a subset of T1M is ompat and invariant under the geodesi ow gt.The de�nition of the onjugay requires a more areful hoie of fundamental domainfor ~T . Let Te be a fundamental domain whose boundary onsists of four piees whihare lifts of piees of the boundary of T and four piees (alled edges) that are lifts ofthe geodesi ars labeled a0 and b0 in Figure 5.2a, and let Tw = �w(Te). This hoie offundamental domain ensures that for any � 2 ~X and w 2 �1(T ), � \ Tw is either emptyor else a single losed interval joining distint edges of Tw.Given a opy Tw of the fundamental domain and a geodesi � 2 ~X that intersets itnontrivially, there is a unique geodesi walk rooted at w that the geodesi shadows. If this25



walk has sequene t and p is the point in T1M that orresponds to the point where � entersTw, let h(p) = t. Note that the de�nition of h(p) is una�eted by moving � by a dektransformation. To extend h to the required homeomorphism, send the open ar in T1Mthat orresponds to � \ Int(Sw) to the open ar in the suspension of (�̂; Æ) that onnetst to �(t). The resulting h is a homeomorphism that sends orbits of (X; gt) to orbits of thesuspension of (�̂; Æ), but does not preserve the time parameterization. However equation(5.1) shows that the time hange oyle (as in x1.5) is Lipshitz.A more dynamial interpretation of the onjugay an be given by using the arslabeled a0 and b0 in Figure 5.2a to onstrut a ross setion to the ow (X; gt). The returnmap to the ross setion will be topologially onjugate to the subshift (�̂; Æ). Thus (X; gt)may be viewed as a variable time suspension of (or speial ow over) (�̂; Æ).x5.3 Coyles on the symbol spaes. Sine the dynamis of � restrited to 
0 areompletely desribed by the symboli system (�0; Æ) it is possible to translate the variousoyles of Setion 2 into oyles de�ned on (�0; Æ). The symboli analog of the projetion� onto a shadowing geodesi (when it exists) is a map with image �̂, the symboli analogof the geodesi ow. In eah ase the symboli analog of a funtion is indiated by thesubsript s. The material of the last subsetion implies that the symboli analogs shareall the relevant properties of their ontinuous ounterparts.The symboli analog of the distane oyle is the simplest to de�ne. Let Ds : ��Z!Zbe given by Ds(s; n) = `(w(s; n)) (f. [De℄). The geometri interpretation of Ds(s; n)is the distane in T from the root to the position after n steps of a walk desribed bys. It is lear that Ds is a subadditive oyle for the shift Æ on �0 and that D�s(s) :=limn!1Ds(s; n)=n an be viewed as the asymptoti amount of anellation of the in�niteword s0s1s2 : : :.To de�ne �s, �x a sequene s 2 �0 and assume that ~x 2 
e with sequene s has ashadowing geodesi, or equivalently, that the walk with sequene s and root e has � and! limits in S1, and these points are distint. The image of the \lift" of �s should be thegeodesi walk rooted at vw whih has these same limits on S1, where vw is the vertexon the shadowing geodesi that is losest to ve. If this walk has sequene t 2 �̂, then�s(s) = t. The distane of ~x from its shadowing geodesi is measured by the length of w,so de�ne �s(s) = dT (ve; vw) = `(w). The oyle that measures the distane of the orbitof a point from its shadowing geodesi is thus Bs(s; n) = �s(Æn(s)) ��s(s).Algebraially, the map �s an be de�ned by anellation. Think of s 2 �0 as a bi-in�nite word written l:r with l and r left and right in�nite words, respetively. Reduel starting from the deimal point and going left, and r by going right. The resulting bi-in�nite word l0:r0 may have anellations aross the deimal point, but it may be writtenas l00 �w:wr00 with w and l00:r00 redued. If l00:r00 is not �nite in either diretion, then itrepresents a point on the shadowing geodesi and in fat l00:r00 = t = �s(s) with t as in theprevious paragraph. The word w is also as in the previous paragraph, and so �s(s) = `(w).x5.4 Computing the rotation measure and properties of �. The di�eomor-phism � restrited to the set 
0 is topologially onjugate to subshift �0. This subshift hasunountably many di�erent ergodi invariant measures, but perhaps the most importantis the Parry measure whih maximizes the metri entropy, and in so doing makes it equal tothe topologial entropy. Sine �0 is a full shift on 4 symbols, the Parry measure, denoted26



�0, is the produt measure. More spei�ally, if b is a �nite allowable blok of symbols andCb;j is the ylinder set of the blok beginning at the jth plae, then �0(Cb;j) = 1=4n, wheren is the number of symbols in the blok. The measure �0 restrited to one-sided sequenesin �0 is also the stationary measure for the standard random walk on the Cayley graph ofF (a; b). In the language of x5.2, this random walk onsists of all one-sided walks rooted atve using one-sided sequenes from �0. Furstenberg showed that the typial suh randomwalk has progressed a distane of (1=2)n + o(n) after n steps (Setion 4.2 of [Fu1℄, f.exerise 9.1 in [PL℄). Thus the asymptoti value of the distane oyle for Parry measureis D�(�0) = 1=2.The existene almost surely of limit points on S1 then follows from Lemma 2.1. Theequivalent statement for the random walks is ontained in Theorem 1.3 of [Fu2℄. Fromthis (or Lemma 2.2) the existene of the shadowing geodesi almost surely follows. Viewedalgebraially this says that the typial bi-in�nite word in the generators a; b; �a;�b redues toa bi-in�nite word. It also says that the symboli version of �s is de�ned almost everywherewith respet to �0.The omputation of the rotation measure of �0 will follow from the omputation of(�s)�(�0). Given a pair of �nite allowable bloks b1; b2 for �̂, �x a pair of embedded ars I1and I2 in T that represent segments of walks with these bloks. If b1 and b2 have the samenumber of symbols, then there is an isometry of T that takes I1 to I2. In general, thisisometry will inlude overing transformations as well as maps suh as the interhange ofa pair of subtrees rooted at the same vertex. Beause the measure �0 is symmetri in thesymbols, the isometry indues a map from ��1s (Cb1;i) to ��1s (Cb2;j) for any i and j thatpreserves the �0 measure. Thus all ylinder sets in �̂ oming from bloks of the same lengthhave the same (�s)�(�0) measure. There are 4 � 3n di�erent allowable bloks of length n in�̂, thus (�s)�(�0)(Cb;i) = 1=(4 � 3n). This is the same as the mass of the ylinder sets forthe Parry measure �̂ on �̂, and so (�s)�(�0) = �̂.To ompute the rotation measure of �0, the measure �̂ is onneted with an invariantmeasure of the geodesi ow via the onjugay h desribed in x5.2. Let � be the unique,ergodi, gt-invariant measure on X that is equivalent to h�(�̂). The geodesi ow restritedto X with the measure � an be thought of as the geodesi ow on T with Liouville measure.Using D�(�0) = 1=2 and Theorem 4.1, �(�0) = (1=2)�. Viewing (X̂; gt) as the variable timesuspension of (�̂; Æ) as in x5.2, the measure � is the suspension of the Parry measure �̂on �̂. The projetion �s indues an almost everywhere de�ned map of the suspension of(�0; Æ) onto that of (�̂; Æ). This sends Parry measure to Parry measure, but the typialimage orbit is moving half as fast as its preimage.To ompute the homology rotation of vetor of �0 (see x4.3), use the Abelianization ofa and b as a basis for H1(T;Z). Sine all the ylinder sets of length one in �0 have equalmass, S(x; 1) takes the four values (1; 0); (�1; 0); (0; 1); (0;�1) on sets of equal measure.Thus R S(x; 1) d�0 = 0, and so using Theorem 1.2, the homology rotation vetor S�(�0) = 0.This orresponds to the well known fat that the standard walk on the Cayley graph ofZ2 has mean progress zero. It also desribes the statistis of the dynamis of � lifted tothe Z2-over T reated by removing an equivariant family of open disks from the universalover of the torus. In this over, the orbits of � make no mean progress almost surely withrespet to �0. 27



The behavior of � lifted to the universal over manifests the frequently ourringdihotomy between what is dynamially typial in terms of topology and measure. Byonatenating symbols in �0 it is not diÆult to onstrut a sequene suh that the orre-sponding orbit under ~� beginning in 
e is dense in ~
0, the full lift of 
0. Sine ~
0 is a Bairespae, a standard argument shows that a dense GÆ-set of points from ~
0 also have thisproperty. Thus in 
0 a dense-GÆ set of points have lifts whose orbits pass through everyfundamental domain in the over, and thus ertainly do not have shadowing geodesis.This is in ontrast to the full �0-measure set of points whih do. Consequentially, theprojetion map � is de�ned almost everywhere, but is not de�ned on a dense GÆ-set in 
0.It also is the ase that � is disontinuous at every point where it is de�ned in 
0. Tosee this using �s, hoose s 2 �0 so that �s(s) = t 2 �̂ exists. Let l and r be left in�niteand right in�nite redued words, respetively, whih begin with symbols di�erent thant�1 and t0, and are suh that the onatenated sequene lr is also redued. For n 2 N,let b(n) = s�n; s�n+1; : : : ; s�1; s0; s1; : : : ; sn and s(n) = lb(n):�b(n)r, where as usual anoverbar means the inverse but now applied to sequene bloks in the obvious fashion. Thens(n) ! s, but �s(s(n)) = l:r whih is the same positive distane from �s(s) for all n.One may also use the symboli models to show that for an �0-typial orbit, the distanefrom the shadowing geodesi is not bounded. This distane is o(n) beause Lemma 2.3yields B�(s) = 0 almost surely. For eah m 2 N, let b(m) = am�am, and so �0(Cb(m);0) =1=42m. Sine �0 is ergodi under the shift, the generi point lands inCb(m);0 about every 42miterates. This ensures that for a generi point for the measure, there is always baktrakingof all lengths that onstantly happens along the walk orresponding to the orbit. Exeptin the speial ase that �s(s) ontains long bloks of a0s or �a0s, this means that the walkis wandering arbitrarily far away from its shadowing geodesi. More preisely, for anym 2 N, Bs(s; n) = m for in�nitely many n 2 N. By hanging the de�nition of b(m) asneeded, this an be made to happen for generi s. An interesting question is a CentralLimit Theorem for Bs: does Bs(s; n)=pn onverges in law to a normal distribution withmean zero and positive standard deviation?Referenes[ABZ℄ Aranson, S., Belitsky, G., and Zhuzhoma, E., Introdution to the qualitative theoryof dynamial systems on surfaes, Translations of Mathematial Monographs, 153,A.M.S., 1996.[Be℄ Beardon, A., The geometry of disrete groups, Graduate Texts in Mathematis, 91,Springer-Verlag, 1995.[BKS℄ Bedford, T., Keane, M., and Series, C. (eds), Ergodi theory, symboli dynamis, andhyperboli spaes, Oxford University Press, 1990.[Bi℄ Billingsley, Convergene of probability measures, John Wiley & Sons, In., 1968.[Bd℄ Boyland, P. Topologial methods in surfae dynamis, Topology and its Appliations,58, 223{298, 1994.[BG℄ Boyland, P. and Gol�e, C., Lagrangian Systems on Hyperboli Manifolds, ErgodiTheory & Dynam. Systems, to appear.[Bu℄ Busemann, H. The geometry of geodesis, Aademi Press In., 1955.28



[CDP℄ Coornaert, M., Delzant, T. and Papadopoulos, A. G�eom�etrie et theorie de groupes:les groups hyperboliques de Gromov , Springer-Verlag, 1990.[CFS℄ Cornfeld, I., Fomin, S., Sinai, Ya., Ergodi theory, Grundlehren der MathematishenWissenshaften, 245, Springer-Verlag, 1982.[CF℄ Croke, C. and Fathi, A., An inequality between energy and intersetion, Bull. LondonMath. So., 22, 489{494, 1990.[DM℄ Denvir, J. and MaKay, R.S. Consequenes of ontratible geodesis on surfaes,Trans. A.M.S., 350, 4553{4568, 1998.[De℄ Derrienni, Y, Quelques appliations du th�eo�erme ergodique sous-additif. Ast�erisque,74, 183{201, 1980.[Fk℄ Franks, J., Homology and Dynamial Systems, CBMS 49, Amerian MathematialSoiety, 1982.[Fd℄ Fried, D., The geometry of ross setions to ows, Topology, 24, 353{371, 1983.[Fu1℄ Furstenberg, H., Random walks and disrete subgroups of Lie groups, Advanes inProbability and Related Topis, 1, 1{63, 1971.[Fu2℄ Furstenberg, H., Nonommuting random produts, Trans. Amer. Math. So., 108,377{428, 1963.[GH℄ Ghys, E. and de la Harpe, P. (eds), Sur les groupes hyperboliques d' apr�es MikhaelGromov, Birkh�auser, 1990.[G℄ Gromov, M. Three remarks on geodesi dynamis and fundamental group, preprint,SUNY at Stony Brook, 1977.[H℄ Handel, M., Zero entropy surfae homeomorphisms, preprint, City University of NewYork, 1986.[HK℄ Hasselblat, B. and Katok, A., Introdution to the modern theory of dynamial systems,Cambridge University Press, 1995.[K℄ Katok, A., Entropy and losed geodesis., Ergodi Theory & Dynam. Systems, 2,339{365, 1982.[Kt℄ Kithens, B. Symboli dynamis. One-sided, two-sided and ountable state Markovshifts, Springer-Verlag, 1998.[Mi℄ Milnor, J., A note on urvature and the fundamental group, Jour. Di�. Geom., 2,1{70, 1968.[M℄ Morse, M., A fundamental lass of geodesis on any losed surfae of genus greaterthan one, Trans. A.M.S., 26, 25-60, 1924.[Pa℄ Parry, W., Topis in ergodi theory, Cambridge University Press, 1981.[PL℄ Peres, Y. and Lyons, R., Probability on Trees and Networks, manusript available athttp://php.indiana.edu/�rdlyons/prbtree/prbtree.html[Po℄ Polliott, M., Letures on ergodi theory and Pesin theory on ompat manifolds, Lond.Math. So. Leture Notes in Math, 180, Cambridge University Press, 1993.[Ro℄ Robinson, C., Dynamial systems. Stability, symboli dynamis, and haos, Studiesin Advaned Mathematis, CRC Press, 1995.[RS℄ Ruelle, D. and Sullivan, D., Currents, ows and di�eomorphisms, Topology, 14, 319{327, 1975.[S℄ Shwartzman, S., Asymptoti Cyles, Ann. of Math. 66, 270{284, 1957.29



[S℄ Series, C, The in�nite word problem and limit sets in Fuhsian groups, Ergodi TheoryDynam. Systems, 1, 337{360, 1981.[T℄ Thurston, W., Three-dimensional geometry and topology, Vol. 1. Edited by SilvioLevy, Prineton Mathematial Series, 35, Prineton University Press, 1997.[W℄ Williams, R. F., The struture of Lorenz attrators, Inst. Hautes �Etudes Si. Publ.Math., 50, 73{99, 1979.[Wo℄ Woess, W., Random walks on in�nite graphs and groups - a survey on seleted topis,Bull. London Math. So., 26, 1{60, 1994.

30


