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t. The rotation measure is an asymptoti
 dynami
al invariant assignedto a typi
al point of a 
ow in a �ber bundle over a hyperboli
 manifold. The totalmass of the rotation measure is the average speed of the orbit and its \dire
tion"is the ergodi
 invariant probability measure of the hyperboli
 geodesi
 
ow whi
hbest 
aptures the asymptoti
 dynami
s of the given point. The rotation measureexists almost everywhere and is 
onstant for an ergodi
 measure of the given 
owand so it may be viewed as assigning an ergodi
 measure of the geodesi
 
ow toone of the given 
ow. It generalizes the usual notion of homology rotation ve
torby en
oding homotopy information.Se
tion 0: Introdu
tion.In a seminal paper Morse 
ompared the geodesi
s of a general metri
 on a higher genussurfa
e to the hyperboli
 geodesi
s ([M℄). His work when transfered into the language ofdynami
al systems says that there always exists a 
ompa
t set invariant under the geodesi

ow of the general metri
 whi
h is semi-
onjugate to the hyperboli
 geodesi
 
ow (
f.[DM℄). The idea of 
omparing the dynami
s of one system to a \
anoni
al" one on thesame manifold has 
ontinued to be fruitful and has found frequent appli
ation.In this paper we 
ompare the dynami
s of a general 
ow �t on a bundle B overa 
losed hyperboli
 manifold M to the dynami
s of the hyperboli
 geodesi
 
ow gt onthe unit tangent bundle T1M of the same manifold. This 
omparison makes use of therotation measure whi
h assigns to a typi
al point in the bundle an invariant measure ofthe hyperboli
 geodesi
 
ow. The assigned gt-invariant measure gives, in a pre
ise sense,the asymptoti
 dire
tion of the �t-orbit through the point. The total mass of the rotationmeasure is the asymptoti
 progress of the lifted orbit in the universal 
over. The �rstmain theorem, Theorem 3.2, asserts that for an ergodi
 �t-invariant measure the rotationmeasure exists almost everywhere and is 
onstant. Thus the rotation measure assigns agt-invariant measure �(�) to a �t-invariant ergodi
 measure �. The se
ond main theorem,Theorem 4.1, states that �(�) is itself ergodi
 under gt and further, that the system (�t; �)is measure theoreti
ally semi
onjugate to (gt; �(�)).Examples of dynami
al systems where the rotation measure 
an be used are given inx1.1. These in
lude 
ows on the hyperboli
 manifold M itself, di�eomorphisms of M thatare isotopi
 to the identity, surfa
e di�eomorphisms whi
h are isotopi
 to pseudoAnosovmaps, and time periodi
 Euler-Lagrange 
ows whose 
on�guration spa
e is M . In the last
ase (whi
h in
ludes the geodesi
 
ows of general metri
s) it is known that there is aninvariant measure whose rotation measure is equal to the Liouville measure of the geodesi
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ow (
f. [BG℄). This is also the 
ase for the surfa
e di�eomorphism des
ribed in x5. Sin
ethe generi
 orbit for Liouville measure explores all the topology of the manifold and thegeodesi
 
ow is Bernoulli with respe
t to Liouville measure, its o

urren
e as a rotationmeasure indi
ates that the given system is dynami
ally very 
ompli
ated. In general, agiven 
ow will not have this level of 
omplexity, and the rotation measures of variousergodi
 measures will be \smaller" measures within the geodesi
 
ow. The dynami
al
omplexity of the given 
ow is then quanti�ed using the entropy and topology of thesesmaller rotation measures.It is instru
tive to 
ompare the rotation measure with the homology rotation ve
torwhi
h goes ba
k to S
hwartzman ([S
℄, see [Bd℄, Se
tion 11 for a review, and x4.3 belowfor a pre
ise de�nition). This dynami
al invariant is often used to quantify dynami
s usingthe ambient topology and 
an be de�ned by lifting the 
ow to the universal free Abelian
over of M . (For simpli
ity of exposition we now restri
t to the 
ase of a 
ow on M itself.)The displa
ement of a lifted traje
tory after a time t is given by an element of the ve
torspa
e H1(M ;R). The homology rotation ve
tor of the traje
tory is the average value ofthese displa
ement ve
tors as t ! 1, if the limit exists. The rotation measure may beviewed as a generalization of the homology rotation ve
tor whi
h keeps tra
k of homotopy
lasses of traje
tories rather than homology 
lasses.To 
ompute homotopy information it is ne
essary to lift the dynami
s to the universal
over. If there is an equivariant Riemannian metri
 in the universal 
over whi
h has aunique geodesi
 ar
 
onne
ting ea
h pair of points (as in the hyperboli
 
ase 
onsideredhere), then the amount of displa
ement of a traje
tory after a time t is gauged by thegeodesi
 ar
 from the initial point on the traje
tory to its position after time t. Anasymptoti
 average of these geodesi
 ar
s must now be 
omputed. The method employedhere is to identify the ar
 with the ar
length measure supported on it, and then take theasymptoti
 average of these measures using the weak limit.The rotation measure 
an also be de�ned using approximating loops and 
losedgeodesi
s. Given a long traje
tory in M , glue on a small ar
 to 
lose it into a loop (
f.[Fd℄). If one was 
omputing the homology rotation ve
tor, the homology 
lass of this loopwould be divided by the elapsed time, and then the limit taken as t!1. To 
ompute therotation measure, pass to the unique, 
losed, hyperboli
 geodesi
 in the same free homo-topy 
lass as the loop, take the ar
 length measure on the 
losed geodesi
 divided by theelapsed time, and then take the weak limit as t!1. This makes it 
lear that a periodi
orbit of the given 
ow �t has a rotation measure supported on the unique 
losed geodesi
in its free homotopy 
lass. The total mass of the rotation measure will be the speed of theproje
tion of the orbit onto the 
losed geodesi
. Thus, in parti
ular, the rotation measuredistinguishes periodi
 orbits that are in the same homology 
lasses but di�erent homotopy
lasses.An essential �rst step in the proof of the main theorems is provided by Lemma 2.2.It states that for a positive progress, ergodi
, �t-invariant measure almost every pointis su
h that its lifted orbit in the Poin
ar�e ball has unique limit points in forward andba
kward time on the sphere at in�nity, and these limit points are distin
t. This allowsthe almost everywhere de�nition of a shadowing geodesi
 whi
h has the same limits onthe sphere at in�nity as the traje
tory. The shadowing geodesi
s provide the basis for the2




omparison of the dynami
s of the given measure to dynami
s within the geodesi
 
ow.The semi
onjuga
y in Theorem 4.1 is indu
ed by proje
tion onto shadowing geodesi
s.Se
tion 5 
ontains an example in whi
h shadowing geodesi
s exist almost everywhere asrequired by Theorem 3.2 but they do not exist for a topologi
ally generi
 point. This showsthe ne
essity of working in the measure theoreti
 
ategory, even though the dynami
s aresmooth. The example also shows that, in general, traje
tories are not a bounded distan
efrom their shadowing geodesi
; this distan
e is always o(t) by Lemma 2.3.Se
tion 1: Preliminaries.This se
tion 
ontains various de�nitions and results required in this paper. In many
ases these are stated only for the situation here, rather than in their greatest generality.The reader is urged to 
onsult the referen
es for proofs and further information.x1.1 Spa
es and dynami
s. Throughout this paper M is a 
losed hyperboli
 man-ifold, i.e. M is 
ompa
t without boundary and has a Riemannian metri
 g on M with
urvature identi
ally equal to �1. The universal 
over of a n-dimensional hyperboli
 man-ifold is di�eomorphi
 to the standard Rn. When Rn is equipped with a metri
 of 
onstant
urvature �1 it is denoted Hn . Depending on the 
ontext we will use ~M or Hn to denotethe universal 
over of M. The group of 
overing transformations in ~M 
an be identi�edwith a dis
rete subgroup, isomorphi
 to �1(M), of the group of isometri
s of H . Thisgroup a
tion has a fundamental domain with 
ompa
t 
losure and under the quotient bythe a
tion the metri
 on H des
ends to the hyperboli
 metri
 on M .The geodesi
 
ow of the metri
 g is denoted gt and is de�ned on T1M the unit tangentbundle of the manifold. As a 
onsequen
e of the Mostow Rigidity Theorem, a 
losedhyperboli
 manifold of dimension three or greater 
arries a unique hyperboli
 metri
. If Mis a surfa
e, it 
arries many hyperboli
 metri
s, but their geodesi
 
ows are all topologi
ally
onjugate ([G℄, [M℄).We shall usually work in a smooth lo
ally trivial �ber bundle p : B ! M with �berF . Letting ~B = F � ~M yields a bundle p : ~B ! ~M whi
h 
overs our original bundle, butin general is not the universal 
over of B.There is another proje
tion of importan
e, from 
overing spa
es to bases; � : ~M !Mand � : ~B ! B. For a set Z � B, a tilde indi
ates its total lift, so ~Z = ��1(Z). Onthe other hand, a single point in ~B will often be denoted ~z, and the 
onvention is that�(~z) = z.The main dynami
al obje
t here is a C1-
ow �t on B, i.e. a 
ow generated by a
ontinuous ve
tor �eld on B. This 
ow lifts to a 
ow ~�t on ~B. For a 
losed hyperboli
manifold M examples of su
h 
ows are:(1) B = M , so that �t is a 
ow on M .(2) B = T�M or B = T �M and �t is a Euler-Lagrange or Hamiltonian 
ow, respe
tively.A related 
ase is B = T�M � S1 or B = T �M � S1 and the 
ow is indu
ed by a timeperiodi
 Lagrangian or Hamiltonian (see [BG℄).(3) If f : M !M is a di�eomorphism isotopi
 to the identity, the 
ow �t is the suspension
ow, and B is the suspension manifold. Sin
e f is isotopi
 to the identity, B isdi�eomorphi
 to M � S1 and the bundle p : B !M is proje
tion on the �rst fa
tor.(4) A related example is when N is a surfa
e and f : N ! N is a di�eomorphism in apseudoAnosov isotopy 
lass. In this 
ase �t is the suspension 
ow. The suspension3



manifold M has a hyperboli
 stru
ture by a theorem of Thurston, and so (M;�t) isas in example (1).x1.2 Hyperboli
 Geometry. For proofs and related information see [Be℄, [T℄, or[BKS℄. We shall use two standard models built in Eu
lidean spa
e for n-dimensional hy-perboli
 spa
e Hn . In both 
ases d(z1; z2) will denote the hyperboli
 distan
e between thetwo points, and jzj will denote the usual Eu
lidean norm of the point z, i.e. jzj = hz; zi1=2,where h�; �i is the standard Eu
lidean inner produ
t. In addition, for a tangent ve
tor v,kvke denotes the norm in the tangent bundle indu
ed by the Eu
lidean metri
.Given two distin
t points z; z0 2 H , the notation [z; z0℄ indi
ates the unique orientedgeodesi
 segment from z to z0. All geodesi
s in this paper are oriented and are 
onsideredboth as subsets of the manifold M and its unit tangent bundle T1M (as well as in ~M andT1 ~M ). The distin
tion is usually unimportant, but when it is, it will be made expli
it.The Poin
ar�e disk model is denoted Pn or just P if the dimension is left unspe
i�ed.The spa
e in this 
ase is the interior of the Eu
lidean unit n-ball and the hyperboli
 metri
indu
es a norm on the tangent bundle given bykvkh = 2kvke1� jzj2 :The origin is always denoted ~0. The unit (n � 1)-sphere that is the Eu
lidean boundaryof Pn is 
alled the sphere at in�nity and is denoted S1. A geodesi
 in this model is anoriented ar
 of a 
ir
le with both ends orthogonal to S1. Ea
h pair of distin
t points inS1 determine exa
tly one su
h geodesi
 and so the set of geodesi
s in parameterized by(Sn�1 � Sn�1)� fdiagonalg. This spa
e when endowed with the Eu
lidean topology andLebesgue measure is denoted G. In parti
ular, a map de�ned on G is 
alled measurableif it is Borel measurable. In the Poin
ar�e disk model the bra
ket notation is extended toin
lude [x; x0℄ denoting the geodesi
 
onne
ting distin
t points x; x0 2 S1.In the upper half spa
e model the spa
e is Un = Rn�1� (0;1) and it has 
oordinates(x; y) with x 2 Rn�1. The norm on the tangent bundle iskvkh = kvkey :Geodesi
s are oriented lines and ar
s of 
ir
les orthogonal to the boundary hyper-plane,i.e. to Rn�1� f0g.The half spa
e model is often 
onvenient for expli
it 
al
ulations. In analogy to thetwo-dimensional 
ase, for a point z 2 Un with z = (x; y), �z = (x;�y) and Im(z) = y.With these 
onventions: d(z;w) = log( jz � �wj+ jz � wjjz � �wj � jz � wj )sinh(12d(z;w)) = jz � wj2(Im(z)Im(w))1=2
osh(d(z;w)) = 1 + jz � wj22Im(z)Im(w) (1:1)4



The �rst lemma will be useful in 
omparing measures supported on di�erent sides ofa geodesi
 triangle. It is what one would expe
t from the \thin triangles" property inhyperboli
 geometry. No attempt was made to optimize the estimate.Lemma 1.1: If gi : [0; `i℄ ! H for i = 1; 2; 3 with `i < 1 are parameterizations byar
 length of the sides of a geodesi
 triangle with `1; `2 > `3 and `1; `2 > 1, and f : H ! Ris a C1-fun
tion withm = supfjf(z)j + jDzf(v)j : z 2 H ; kvkh = 1g <1then �����Z `10 f(g1(s)) ds� Z `20 f(g2(u)) du����� � m(5 `3 + 1):Proof: The side of the triangle parameterized by gi is 
alled 
i, the angle opposite 
iis �i, and assume that g1(0) = g2(0) is the vertex with angle �3. We may assume withoutloss of generality that `1 � `2, and so �1 � �2 > �3.Let k(s) be the length of the geodesi
 segment that has one endpoint on 
1 at thepoint g1(s), is orthogonal to 
1, and the other end of the geodesi
 segment is on 
2. De�neu(s) so that this point is g2(u(s)). Note that k(s) < `3 and an easy argument usinghyperboli
 trigonometry yields d(u(s))=ds > 1. Let û = `2 � `3 and de�ne ŝ so that itsatis�es u(ŝ) = û, and let k̂ = k(ŝ).NowZ `10 f(g1(s)) ds� Z `20 f(g2(u)) du= Z ŝ0 f(g1(s)) � f(g1(s))d(u(s))ds ds + Z ŝ0 f(g1(s))d(u(s))ds � f(g2(u(s)))d(u(s))ds ds+ Z `1ŝ f(g1(s)) ds� Z `2û f(g2(u)) du:From left to right these integrals are 
alled I1; I2; I3, and I4.Be
ause d(u(s))=ds > 1,jI1j �mZ ŝ0 d(u(s))ds � 1 ds = m(û� ŝ) � mk̂ �m`3;where û� ŝ � k̂ by the geodesi
 triangle inequality. The hyperboli
 law of sines yieldsk(u) < sinh(k(u)) = sinh(u) sin(�3) = sinh(u) sinh(`3)sinh(`2) � eu+`3�`2where in the last inequality we used the hypothesis `2 > 1. Sin
e f is Lips
hitz with
onstant m on the geodesi
 segment from g1(s) to g2(u(s)),jI2j � mZ ŝ0 k(s)d(u(s))ds ds = mZ û0 k(u) du� m(eû+`3�`2 � e`3�`2) = m(e0 � e�û) �m:5



Finally, jI3 � I4j � jI3j+ jI4j�m(`1 � ŝ + `2 � û)�m(2`3 + k̂ + `3) � 4m`3using the triangle inequality on the geodesi
 quadrilateral with verti
es g1(ŝ); g1(`1); g2(`2),and g2(û). tux1.3 Dynami
al Co
y
les. For more information see [HK℄ or [Po℄. The study ofergodi
 invariant measures is essential for understanding the dynami
s of a 
ow �t. Even ifthe 
ow lives on a smooth manifold, restri
ting attention to an invariant measure requiresthe notion of a 
ow in the measure theoreti
 
ategory.A (measure theoreti
) 
ow is a triple (Z; �; �t), 
onsisting of a measure spa
e Z, ameasurable 
ow �t, and an invariant measure �. The 
ow is required to be 
ontinuous onorbits, i.e. the 
ow 
onsidered as a map Z �R! Z is measurable in the �rst 
omponentbut 
ontinuous in the se
ond. In the 
ases of interest here, Z will always have a naturaltopology and we shall always 
onsider the �-algebra as the Borel sets, so the �-algebra isnot in
luded in the notation for a 
ow.A fun
tion C : Z �R! R is 
alled a additive 
o
y
le for the 
ow �t ifC(z; s+ t) = C(z; s) + C(�s(z); t) (1:2)and a sub-additive 
o
y
le ifC(z; s+ t) � C(z; s) + C(�s(z); t) (1:3)for all z 2 Z and s; t 2 R. A 
o
y
le is 
alled Lips
hitz with respe
t to the invariant measure� if is uniformly Lips
hitz in the se
ond variable on almost every traje
tory. Using (1.2) or(1.3) this is equivalent to the existen
e of a 
onstant � > 0 so that for a.e. z, jC(z; t)j � �jtjfor all t. Clearly a Lips
hitz 
o
y
le satis�es C(z; 1) 2 L1(�) and so Theorem 1.2 belowapplies. Note that the Lips
hitz 
ondition is only required to hold in the t variable. Ingeneral, a Lips
hitz 
o
y
le C(z; t) will depend only measurably on z. All the variousgeometri
 
o
y
les de�ned in this paper will turn out to be Lips
hitz.The forward average asymptoti
 value of a 
o
y
le isC�(z) = limt!1 C(z; t)tif the limit exists. We shall make frequent use ofTheorem 1.2: (Kingman's Sub-additive Ergodi
 Theorem) If (Z; �; �t) is a
ow with � ergodi
, and C is a sub-additive 
o
y
le for �t with C(z; 1) 2 L1(�), then C�(z)exists almost everywhere and has the 
onstant valueC�(�) = inft2R+f1t Z C(z; t) d�(z)g (1:4)6



whi
h in the 
ase of an additive 
o
y
le is equal toC�(�) = Z C(z; 1) d�(z): (1:40)Given a 
ow �t and a 
o
y
le C, let ZC denote the set of points for whi
h C� exists.Points in ZC will be 
alled generi
 for C. Another way of phrasing Kingman's theorem isthat ZC has full measure with respe
t to any �t-invariant measure for whi
h C(z; 1) is inL1. In the sequel we shall often be 
on
erned with a �xed ergodi
 measure, in whi
h 
aseZC means just those elements of ZC in the support of the measure.Note that if C is a Lips
hitz additive 
o
y
le, then C 0(z) := �C�t (z; 0) exists a.e.and is bounded. Di�erentiating (1.2) with respe
t to t and evaluating at t = 0 yieldsC 0(�s(z)) = �C�t (z; s) and so C(z; t) = Z t0 C 0(�s(z)) ds:Thus for Lips
hitz additive 
o
y
les Kingman's Theorem redu
es to the Birkho� ergodi
theorem.The asymptoti
s of 
o
y
les in ba
kwards time will also be needed in the sequel. Notethat if C is a sub-additive 
o
y
le for �t, then Ĉ(z; t) := C(z;�t) is one for  t = ��t. Calla sub-additive 
o
y
le symmetri
 if C(�t(z);�t) = C(z; t) for all t. It follows easily from(1.3) that a symmetri
 
o
y
le is non-negative for all z and t. For a symmetri
 
o
y
le,Z Ĉ(z; t) d�(z) = Z C(z;�t) d�(z) = Z C(�t(z);�t) d�(z) = Z C(z; t) d�(z) (1:5)where the se
ond equality uses the fa
t that � is a �t-invariant measure. Thus dividing byt and using (1:4) yields Ĉ�(�) = C�(�) for an ergodi
 �. Thus for an ergodi
 measure �, ageneri
 z, and a symmetri
 
o
y
le C, we may writeC(z; t) = C�(�) jtj+ o(t): (1:6)In 
ontrast, for an additive 
o
y
le one always has C(�t(z);�t) = �C(z; t) and so(1:5) with the appropriate sign 
hanges shows that for an ergodi
 measure �, a generi
 z,and an additive 
o
y
le C, we may writeC(z; t) = C�(�) t+ o(t): (1:7)It is important to note that for both additive and subadditive 
o
y
les the exa
t form ofthe o(t) term 
an depend strongly on the 
hoi
e of the point z.x1.4 Measure-valued 
o
y
les. The de�nition of the rotation measure in x3 makesuse of 
o
y
les that take their value in a spa
e of signed measures. Let X be a 
ompa
tmetri
 spa
e and M(X) denotes the Bana
h spa
e of all �nite signed Borel measures7



on X. Re
all that a sequen
e of measures �n ! � weakly if R f d�n ! R f d� for all
ontinuous f : X ! R. Given a 
ow (Z;�t; �) as in x1.3, a fun
tion N : Z �R!M(X)is 
alled a measure-valued 
o
y
le for �t if for all s; t 2 R and all z 2 Z, N(z; t + s) =N(z; t) + N(�t(z); s) where the sum is the usual sum of signed Borel measures. As withother 
o
y
les, we let N�(z) = limt!1 N(z; t)tif the weak limit exists.Given a fun
tion f 2 C(X;R), then Nf (z; t) := R f dN(z; t) is a real-valued additive
o
y
le. The existen
e of the asymptoti
 average N� of a measure-valued 
o
y
le givenin the next lemma follows easily from the existen
e of the various N�f and the RieszRepresentation Theorem. The lemma is 
learly not the most general of its type in theliterature. Let 1 : Z ! R be the 
onstant fun
tion 1(z) = 1 for all z 2 Z.Lemma 1.3: If N is a measure-valued 
o
y
le for �t and � is an ergodi
, �t-invariantprobability measure with N1(z; 1) 2 L1(�), then N� exists and is 
onstant almost every-where.Proof: First note that N1(z; 1) 2 L1(�) implies Nf (z; 1) 2 L1(�) for any f 2C(T1M;R), and so N�f (�) exists by Theorem 1.2. Let � denote the real-valued linearfun
tional � : f 7! N�f (�). Now if z is generi
 for both Nf and N1, then�(f) = limt!1 R f dN(z; t)t� kfk0 limt!1 N1(z; t)t= kfk0N�1 (�):Thus � is bounded and so by the Riesz Representation Theorem there is a measureN̂ 2 M(X) with �(f) = R f dN̂ . Now pi
k a 
ountable dense set ff0 = 1; f1; f2; : : :gin C(X;R) and let ZN be the full measure set of points that are generi
 for all the 
orre-sponding 
o
y
les, i.e. ZN = \ZNfi :So for z 2 ZN , R fi dN(z; t)t = Nfi (z; t)t ! �(fi) = Z fi dN̂for all fi and so N(z;t)t ! N̂ weakly. tux1.5 Semi
onjuga
ies, time 
hanges and invertible 
o
y
les. For more infor-mation see [HK℄, [Pa℄ se
tion 5.1, or [CFS℄. The main strategy of this paper is to 
omparea given 
ow on a hyperboli
 manifold to the geodesi
 
ow. One way this is a

omplishedis via a measure theoreti
 semi-
onjuga
y. Two 
ows (X; �; �t) and (Y; �; hs) (as de�nedin x1.3) are said to be semi
onjugate if there is a measure-preserving surje
tion f : X ! Ythat takes orbits of �t to those of hs preserving the dire
tion of the 
ow, but not ne
essar-ily the time parameterization. Further, we require that f be 
ontinuous when restri
ted8



to orbits. Ex
ept in the 
ase when the image orbit is periodi
, this means that whenrestri
ted to an orbit in X, f is a homeomorphism onto an orbit in Y . Note however thatf may take many orbits of �t to the same orbit of hs. (The reader is 
autioned that thereare many variants of this de�nition in the literature going under a variety of names.)There is a new 
ow �̂s obtained by a time 
hange of �t that is semi
onjugate to hsby a time-preserving semi
onjuga
y. It will be useful to des
ribe this expli
itly. Assumefor simpli
ity that (X; �; �t) is aperiodi
, i.e. the set of 
losed orbits has measure zero.Given the map f : X ! Y as above, de�ne A(x; t) as the unique real number withthe property that hA(x;t) Æ f(x) = f Æ �t(x). It is easy to 
he
k that A is an additive
o
y
le and it is inje
tive and onto in the se
ond fa
tor. Thus there is another additive
o
y
le B(x; s) with A(x;B(x; s)) = s and B(x;A(x; t)) = t. Now de�ne a new 
ow onX by �̂s(x) = �B(x;s)(x), and then hs Æ f(x) = f Æ �̂s(x), for all s; x, thus hs and �̂s aresemi
onjugate by a time-preserving semi
onjuga
y.The additive 
o
y
le A 
an be used for a time 
hange be
ause for �xed z, A(z; �)is a homeomorphism R ! R. Su
h a 
o
y
le will be 
alled invertible. Using (1.2) theinje
tivity of A(z; �) is equivalent to a monotoni
ity property. An additive 
o
y
le A is
alled monotone, if for all � > 0, A(z; � ) > 0 (equivalently, t > s implies A(z; t) > A(z; s)),and semi-monotone if the inequalities are not stri
t, i.e. A(z; � ) � 0. Note that a monotone
o
y
le with A�(�) > 0 is invertible.If � is an ergodi
 probability measure for �t, and the time 
hanged 
ow �̂s is 
on-stru
ted using the invertible Lips
hitz 
o
y
le A, then the ve
tor �eld that generates �̂s isobtained by multiplying the generator of �t by 1=A0(z), where A0(z) = �A�t (z; 0). Further,the measure �̂ de�ned by d�̂ = A0(z)K d�;with K = R A0(z) d� is an ergodi
, �̂s invariant measure, and is, in fa
t, the only su
hmeasure that is equivalent to �.In x4 a fun
tion arises that takes orbits to orbits as in a semi
onjuga
y, but is notlo
ally inje
tive on orbits and so does not give rise to a monotone 
o
y
le A. However, itis the 
ase that A is asymptoti
ally monotone in the sense that A� > 0. The next lemmasays that we 
an alter A in a 
ontrolled fashion to obtain the required invertible 
o
y
le.The alteration of A in (1.8) is usually expressed by saying that A is 
ohomologous to thealteration Â. As with Lemma 1.3 this is 
ertainly not the most general result of its typein the literature.Lemma 1.4: If � is an ergodi
, invariant probability measure for a 
ow �t on Xand A is a Lips
hitz, additive 
o
y
le with A�(�) > 0, then there exists a measurable� : X ! (0;1) su
h that Â(x; t) := A(x; t) + �(�t(x)) � �(x) (1:8)is an invertible, Lips
hitz, additive 
o
y
le for �t with Â�(�) = A�(�).Proof: We pro
eed in two steps, �rst produ
ing a 
o
y
le A1 that is semi-monotoneand then using it to produ
e Â. 9



Let �1(x) = sups�0A(x; s). Sin
e A� > 0, �1 is �nite almost surely. Further, it is notdiÆ
ult to 
he
k that �1 is measurable, non-negative, 
ontinuous on orbits, and thatA1(x; t) := A(x; t) + �1(�t(x)) � �1(x)is a semi-monotone additive 
o
y
le.Now let �(x; t) = �1(�t(x)) � �1(x). We 
laim that � is a Lips
hitz 
o
y
le with thesame 
onstant as A, denoted �. Property (1.2) is obvious, and sin
e �(x;�t) = ��(x; t)it suÆ
es to assume t > 0. Sin
e A is 
ontinuous on orbits, there are s1; s2 � 0 with�1(�t(x)) = A(�t(x); s1) and �1(x) = A(x; s2), and so�(x; t) = A(�t(x); s1) �A(x; s2):Now if t � �s1 then j�(x; t)j � jA(�t(x); s1)j � �js1j � �t. On the other hand, ift < �s1, then using the de�nition of �1, s2 = s1 + t, and sin
e by (1.2), A(�t(x); s1) =A(x; s1 + t)�A(x; t), we get j�(x; t)j = jA(x; t)j � �t, proving the 
laim, and also provingthat A1 is Lips
hitz.Further, we 
laim that R �(x; 1) d�(x) = 0 (this would be trivial if �1 2  L1(�), butthat is not proven here). To prove the 
laim, for n 2 N, de�ne �(n)1 as �(n)1 (x) = �1(x),if �1(x) � n, and �(n)1 (x) = n, otherwise, and let �(n)(x; t) = �(n)1 (�t(x)) � �(n)1 (x). Now
ertainly, �(n)1 2 L1(�), and so by the invarian
e of the measure, R �(n)(x; 1) d�(x) = 0.Sin
e �(n) ! � pointwise and j�(x; 1)j < �, R �(x; 1)d�(x) = 0 by the bounded 
onvergen
etheorem. So using (1.40), A�(�) = Â�(�).For the se
ond step, pi
k  : R! (0;1), supported on [0;1) whi
h satis�es R  = 1and R s  (s) ds = m <1. Let �2(x) = R10 A1(x; s) (s) ds, and de�neÂ(x; t) := A1(x; t) + �2(�t(x)) � �2(x)= A1(x; t) + Z A1(�t(x); s) (s) ds� Z A1(x; s) (s) ds= Z (A1(x; s + t) �A1(x; s)) (s) ds= Z A1(�s(x); t) (s) ds (1:9)using 
o
y
le property for A1 and the fa
t that R  = 1.For t > 0, sin
e A1 is Lips
hitz, (1.9) implies that Â(x; t) � �t, so Â is Lips
hitzalso. Again using (1.9), for �xed � > 0, Â(x; � ) = R A1(�s(x); � ) (s) ds. The integrandis a 
ontinuous fun
tion of s whi
h is nonnegative sin
e A1 is semi-monotone and positivesomewhere for generi
 x sin
e A�1(�) > 0, thus Â(x; � ) > 0, and so Â is monotone. Finally,sin
e jA1(x; s)j � �jsj, j�2j � �m, thus �2 2 L1(�). Thus R �2(�t(x)) � �2(x) d�(x) = 0,and so Â�(�) = A�1(�) = A�(�). Sin
e this is positive, Â is invertible. tu10



Se
tion 2: Geometri
 
o
y
les.We now restri
t attention to 
ows as in x1.1, namely smooth 
ows �t on a bundleabove a 
losed hyperboli
 manifold M . The motion of orbits in the universal 
over aredes
ribed using various geometri
 
o
y
les.x2.1 The distan
e 
o
y
le. The progress of lifted orbits in the universal 
over ismeasured by a sub-additive 
o
y
le, the distan
e 
o
y
le (see [CF℄ and [K℄). Given z 2 B,pi
k a lift ~z 2 ~B and let D(z; t) = d(p( ~�t(~z)); p(~z)):Note that this de�nition is independent of the 
hoi
e of the lift ~z, and the sub-additiveproperty of D is a dire
t 
onsequen
e of the triangle inequality for the metri
 d.If a �t-invariant measure � has 
ompa
t support (as will always be assumed here),then be
ause the 
ow is C1, there is a bound, say �, on the hyperboli
 norm of the timederivative of a traje
tory ~�t(z) when proje
ted to H . Thus D(z; t) � �jtj for every z inthe support of �, and so D is Lips
hitz with respe
t to �. Note also that D is symmetri
as a 
onsequen
e of the symmetri
 property of the metri
. Thus by (1.6) for ergodi
 � andgeneri
 z we may write D(z; t) = D�(�) jtj+ o(t).The invariant measures of primary interest here represent dynami
s where there is netaverage motion around the manifold, i.e. D�(�) > 0. Su
h an ergodi
 measure will be saidto have positive progress for �t.Remark 2.1: There is another natural 
o
y
le that measures speed in the 
over,namely the length 
o
y
le. If `(x; t) denotes the hyperboli
 ar
length of the proje
ted 
urvep( ~�[0;t℄(~z)), then ` is 
learly an additive 
o
y
le bounded above by D. The asymptoti
average `� is the average speed on the traje
tory (where the norms of velo
ity ve
torsare taken using the hyperboli
 metri
). In general, `� 
an be stri
tly less than D�. Todistinguish the properties of an orbit measured by these two 
o
y
les, D� is des
ribed asthe average progress of an orbit in the 
over rather than the speed of the orbit.x2.2 Limits on the sphere at in�nity. The lemmas in this se
tion show thatpositive progress measures have the property that generi
 orbits in the 
over 
onvergeto points on the sphere at in�nity. Further, these limits points are distin
t as t ! 1and t ! �1. The 
onvergen
e to a point at in�nity turns out to require mu
h weakerhypotheses than does the distin
tness of the forward and ba
kward limits. The �rst lemmagives only the existen
e of the limits. The idea for its proof 
ame from Yair Minsky.Lemma 2.1: If 
 : [0;1) ! Pn is a smooth path parameterized by ar
length andD(t) := d(
(0); 
(t)) is su
h that exp(�D(t)) is integrable, then 
(t) ! ! 2 S1.Proof: Sin
e 
 is parameterized by ar
length, jdD=dtj � 1, and so the integrabilityassumptions imply that D(t) ! 1 as t ! 1. Thus there is a T � 0 su
h that t � Timplies 
(t) 6= ~0.Let � : [T;1℄ ! S1 be the radial proje
tion of 
(t) on S1, i.e.�(t) = 
(t)j
(t)j :11



Computing one �nds thath _�(t); _�(t)i = h _
(t); _
(t)i � h
(t); _
(t)i2h
(t);
(t)ij
(t)j2and thus k _�(t)ke � k _
(t)kej
(t)j :A simple 
al
ulation using the metri
 on Pn yields j
(t)j = tanh(D(z; t)=2) and by de�ni-tion k _
(t)kh = 2k _
(t)ke1� j
(t)j2 ;and so k _�(t)ke � k _
(t)kh2 
osh(D(z; t)=2) sinh(D(z; t)=2) = 2eD(t) � eD(t) :Thus the integrability assumptions on D(t) imply that R1T k _�(t)ke is �nite and so�([T;1)) � S1 has �nite Eu
lidean length. This implies that there is a ! 2 S1 withlimt!1 �(t) = !. Sin
e D(t) !1, limt!1 
(t) = !. tuIf ~�t(~z) is a traje
tory of the lifted 
ow on ~B and p( ~�t(~z)) ! ! 2 S1 then de�ne!(~z) = !. Similarly, de�ne �(~z) as the limit as t ! �1 if that exists. If �(~z) and!(~z) exist and are distin
t, then the oriented geodesi
 [�(~z); !(~z)℄ is 
alled the shadowinggeodesi
 of the traje
tory and is denoted �~z (
f. [H℄). The next lemma says that for anergodi
, positive progress measure for �t, the shadowing geodesi
 exists almost everywhere.Lemma 2.2: If � is a �t-invariant probability measure that is ergodi
, has 
ompa
tsupport, and D�(�) > 0, then there exists a set Z1 � B of full �-measure so that for all~z 2 ~Z1, �(~z) and !(~z) exist and are distin
t. Further, the maps �;! : ~Z1 ! S1 aremeasurable.Proof: Fix ~z 2 ~ZD and let 
(t) = p( ~�t(~z)). If 
̂(s) is a reparametrization of 
 by ar
length and D̂(s) = d(
̂(0); 
̂(s)), thenZ 10 exp(�2D̂(s)) ds = Z 10 k _
(t)kh exp(�2D(z; t)) dtis �nite be
ause D(z; t) = D�(�)jtj + o(t) from x2.1 and k _
(t)kh is bounded be
ause 
 isC1 and � has 
ompa
t support. Thus by Lemmas 2.1, !(~z) exists, and similarly, �(~z) doesalso. The fun
tions � and ! are measurable be
ause they are 
onstru
ted as the a.e. in zlimit as t! 1 of a fun
tion 
ontinuous in ~z and t. It remains to show that �(~z) 6= !(~z)for typi
al z. For this another 
o
y
le is required.Fix x 2 S1. The family of horospheres tangent to S1 at x 
an be given a param-eterization Hx(r) with r 2 R whi
h has the property that d(Hx(r);Hx(s)) = jr � sj. Asa normalization assume that Hx(0) 
ontains the origin and as r ! 1, the horospheres
onverge to x. If y 2 Hx(r) the Busemann fun
tion based at x is de�ned as �x(y) = r12



(this de�nition is slightly non-standard, see [Bu℄). Standard properties of the horospherefamily yield that d(y;Hx(s)) = jr � sj = j�x(y) � sj, and this distan
e is realized by ageodesi
 segment that is orthogonal to both Hx(r) and Hx(s).Now de�ne C(z; t) = �!(~z)(p( ~�t(~z))) ��!(~z)(p(~z));where ~z is some 
hoi
e of a lift of z. Clearly C is an additive 
o
y
le for �t whi
h measuresthe progress of orbits in the dire
tion normal to the horospheres. In addition, the de�nitionis independent of the 
hoi
e of lift ~z and the standard horosphere properties yield thatjC(z; t)j � D(z; t) for all t, and so C is a Lips
hitz 
o
y
le and Theorem 1.2 applies.Let Z1 = ZD \ ZC . For z 2 Z1 by (1.7) D(z; t) = 
1jtj+ o(t) and C(z; t) = 
2t+ o(t)where by assumption 
1 > 0. We next establish the 
laim 
2 = 
1 using the upper halfspa
e model, U. Fix a z 2 ~Z1 and use an isometry that sends P to U, p(~z) to (~0; 1), and!(~z) to 1.Let 
(t) = p( ~�t(~z)). By 
onstru
tion 
(0) = (~0; 1). Write the 
oordinates of 
(t) as(K(t);H(t)) 2 Rn�1 � R+. For the moment will suppress the dependen
e of K, H andvarious 
o
y
les on z and t. With this 
onvention we have C = (�1)Æd�(K; 1); (K;H)�with Æ = 0 when H � 1 and Æ = 1, otherwise, and D = d�(~0; 1); (K;H)�.From the distan
e formulas (1.1),H = exp(C) = exp(
2t+ o(t)) (2:1)
osh(D) = 1 + jKj2 + (H � 1)22H = jKj22H + H2 + 12H (2:2)and the Cau
hy-S
hwarz inequality yields1H djKjdt = 1H dhK;Ki1=2dt = 1H hK; _KihK;Ki1=2 � 1H k _Kke = k _
kh <1: (2:3)If 
2 < 0, then using (2.1) and (2.3), R10 k _Kke is �nite. Thus, H(t) is de
reasing andK(t) is bounded, and so limt!1 
(t) 
annot be 1 as assumed. On the other hand, if
2 � 0, (2.3) implies lim sup(1=t)jK(t)j � 
2, and so (2.2) gives 
1 � 2
2 � 
2 = 
2. Butsin
e jC(z; t)j � D(z; t), j
2j � 
1, and so 
2 = 
1 > 0 as 
laimed.To show that �(~z) 6= !(~z) = 1, we now have 
2 > 0 so (2.1) and (2.3) imply thatH(t) ! 0 as t! �1 and R 0�1 k _Kke is �nite, so limt!�1 
(t) 6= 1. tuRemark 2.2: The horo
y
le 
ow on hyperboli
 surfa
es makes 
lear the ne
essity ofthe positive progress hypothesis in order to get a shadowing geodesi
. The horo
y
le 
owhas a unique ergodi
 invariant measure, 
all it �. Using the upper half plane model U2, themembers of the horo
y
le family of 1 are the horizontal lines y = 
. These yield generi
traje
tories of the horo
y
le 
ow that proje
t to 
(t) := (
t; 
). The distan
e 
o
y
lestarting at z = (0; 
) is D(t) = d((0; 
); (
t; 
)) = 2 log((pt2 + 4 + t)=2) using the formulas(1.1). Thus the hypothesis of Lemma 2.1 holds, and indeed � and ! both exist. Howeverthey are equal, whi
h is in agreement with the fa
t that D�(�) = 0 and so the hypothesesof Lemma 2.2 are not satis�ed. 13



Remark 2.3: If a lifted traje
tory is su
h that !(x) exists then the orbit of !(x)under the de
k group as a subset of the sphere at in�nity S1 is a topologi
al invariantof the traje
tory. This invariant has been studied in some detail for the 
ase of 
ows onhyperboli
 surfa
es. See Se
tion 6.2 of [ABZ℄ and the referen
es therein.x2.3 Proje
tion and asymptoti
s. Lemma 2.2 says that the generi
 point ofa positive progress measure has a shadowing geodesi
. The next lemma des
ribes theasymptoti
s of the distan
e from this geodesi
 and of the proje
tion onto it. Given ageodesi
 and point in H , hyperboli
 orthogonal proje
tion sends the point to a point onthe geodesi
. To get an image point in the unit tangent bundle de�ne � : G�H ! T1H via�(�; z) = (x; v) where x is the orthogonal proje
tion of z onto � and v is the unit ve
tortangent to � at x. Note that � is 
ontinuous when G is given the topology des
ribed inx1.2.Now �x a measure � as in Lemma 2.2. For ~z 2 ~Z1 from that lemma, let �~z be theshadowing geodesi
 [�(~z); !(~z)℄ and de�ne � : ~Z1 ! T1 ~M via �(~z) = �(�~z; ~z). Note that� is equivariant (i.e., it des
ends to a map Z1 ! T1M that is also 
alled �), is measurable(using Lemma 2.2), and takes orbits of ~�t to those of ~gt.We need two 
o
y
les whi
h are de�ned for z 2 Z1. Let �(~z) = d�p(~z);�~z� =d�p(~z); p(�(~z))�, and B(z; t) = �(~�t(~z)) � �(~z). Thus B is an additive 
o
y
le thatmeasures the progress of the orbit though ~z in a dire
tion orthogonal to its shadowinggeodesi
. The proje
ted progress onto the shadowing geodesi
 is measured by an additive
o
y
le A de�ned as follows. Fix a parameterization by ar
length for ea
h geodesi
 in H .The parameterization is used to add and subtra
t elements on the geodesi
s. Given z 2 Z1and t 2 R, let A(z; t) = �( ~�t(z)) � �(z), or equivalently, A(z; t) is the unique s 2 R with~gs(�(z)) = �( ~�t(z)).Note that both A and B are measurable. Further, sin
e hyperboli
 orthogonal pro-je
tion onto a geodesi
 
ontra
ts tangent ve
tors, jA(z; t)j � D(z; t) for all z; t. By thetriangle inequality, B(z; t) � D(z; t) + jA(z; t)j. Thus sin
e D is a Lips
hitz 
o
y
le, bothA and B are also. The following proposition says that the rate of motion proje
ted to theshadowing geodesi
 is the same as the progress of the motion and that the distan
e awayfrom the shadowing geodesi
 grows at most like o(t).Lemma 2.3: With � as in Lemma 2.2 and the 
o
y
les A, B and D as above,A�(�) = D�(�) and B�(�) = 0.Proof: We will use the upper half spa
e model, and let Z2 = Z1\ZA\ZB with Z1 asin Lemma 2.2. Fix a ~z 2 ~Z2. Using an isometry we may arrange !(~z) = 1 and �(~z) = ~0,and so �~z = fx = ~0g. We may also assume that 
(0) = (L; 1) for some L 2 Rn�1. Callthe 
oordinates of 
(t) = (K(t);H(t)) 2 Rn�1 � R+. Note that !(~z) = 1 implies thatA(z; t) !1.Again we suppress dependen
e of 
o
y
les and 
oordinates on z and t. Hyperboli
orthogonal proje
tion onto �~z is denoted �̂. In Eu
lidean 
oordinates �̂ is parti
ularlysimple, �̂(
(0)) = (0;p1 + jLj2) and �̂(
(t)) = (0;pjKj2 +H2). Note that A(z; t) !1implies the existen
e of a T > 0 so that t > T implies �̂(
(t)) > �̂(
(0)). Hen
eforthassume that t > T . 14



Letting B0 = d�
(0); �̂(
(0))� = d�
(0);�~z� and � is as above,A = d��̂(
(0)); �̂(
(t))�B = �(
(t)) �B0D = d�
(0); 
(t)�:Using the distan
e formulas (1.1),
osh(�) = pjKj2 +H2HeA = s jKj2 +H2jLj2 + 1 :Solving yields H = eA
osh(�)p1 + jLj2jKj = eA tanh(�)p1 + jLj2:From (2.3), 1H djKjdt is bounded and so 
omputing, se
h(�) _� + sinh(�) _A is bounded, andso _A < ksinh(�) � _�sinh(�) 
osh(�) (2:4)for some 
onstant k.Now using (1.6) and (1.7) we may write A = 
1t + o(t), B = 
2t + o(t) and D =
3jtj+ o(t) with 
3 > 0 by assumption. If 
2 6= 0, sin
e �(
(t)) = B(z; t)�B0, (2.4) yieldsthat Z 10 _A <1
ontradi
ting the fa
t that A(z; t) ! 1, and thus 
2 = 0. Finally note that the distan
eformulas (1.1) also yield that
osh(D) = 1 + jK� Lj2 + (H � 1)22Hand so 
1 = 
3 as required. tuRemark 2.4: Given � > 1 and � > 0, a 
urve 
 : R! P is 
alled a (�; �)-quasigeodesi
if ��1(d� 
)� � � d(
(
); 
(d)) � �(d� 
) + �for all [
; d℄ in the domain of 
. A quasigeodesi
 always has a shadowing geodesi
 � andthere is a 
onstant k depending only on � and � so that 
 is within a distan
e k of �(see [GH℄ or [CDP℄). This implies that near S1 a quasigeodesi
 lies in a 
one with vertexat its limit point. For a generi
 point of an ergodi
 positive progress measure Lemma 2.215



ensures the existen
e of shadowing geodesi
 for the traje
tory through the point. However,in general, the traje
tory will not be a quasigeodesi
, and the distan
e from the shadowinggeodesi
 may be
ome unbounded while still being o(t) as required by Lemma 2.3. In theexample of x5 this happens for almost every point for an ergodi
 measure. Rather thanbeing 
ontained in a 
one based on S1, the envelope of the traje
tories are tangent to thesphere at in�nity.Se
tion 3: The rotation measure.x3.1 De�nition of the rotation measure. We give two equivalent de�nitions ofthe rotation measure, one in the base and the other in the 
over. Fix z 2 B and t 2 Rand let G be the oriented geodesi
 segment that is homotopi
 with �xed endpoints to theproje
tion of the orbit segment starting at z and 
owing for time t, i.e. to p(�[0;t℄(z)). Thelift of G to T1M is denoted G0 and M(z; t) is the uniformly distributed measure supportedon G0 that has total mass equal to the hyperboli
 length of G. Note that this length isD(z; t), the distan
e 
o
y
le. The rotation measure is�(x) = limt!1M(z; t)t (3:1)if the weak limit exists.For the se
ond de�nition, �x a lift ~z to ~B of z and let ~G = [p(~z); p( ~�t(~z))℄ and ~G0 itslift to T1 ~M . Now let M(z; t) = ��(�) where � is the ar
 length measure on ~G lifted to ~G0.The rotation measure is on
e again de�ned as in (3.1).Note that if the rotation measure exists it is an invariant measure for the geodesi
 
owgt. It is in general not a probability measure, but rather has total mass equal to D�(z).x3.1 Existen
e of the rotation measure. If M(z; t) were an measure-valued,additive 
o
y
le, then Lemma 1.3 would immediately give the existen
e of the rotationmeasure almost everywhere. However, it does not have the appropriate additive properties,but it is asymptoti
 to the measured-valued 
o
y
le de�ned as follows.Given z 2 Z2 with Z2 as in the proof of Lemma 2.3 and t 2 R, let N(z; t) be thesigned uniformly distributed measure on the segment of the geodesi
 
ow g[0;A(z;t)℄(�(~z))(this orbit segment has as its endpoints �(~z) and �( ~�t(~z))). The total mass of N(z; t) isthusA(z; t). Now 
learly N(z; t) is a measured valued 
o
y
le for �t andN1(z; 1) = A(z; 1).Thus if � has 
ompa
t support, N1(z; 1) 2 L1(�) and so using Lemma 1.3, the weak limitN�(z) exists on a full measure set denoted ZN . The next lemma shows that these limitsare the same as those for the rotation measure �. In parti
ular, even though N(z; t) is asigned measure, the limit N� is a ordinary (i.e. non-negative valued) measure.Proposition 3.1 Given ergodi
 � as in Lemma 2.3, then for almost every z, �(z) =N�(z).Proof: Fix a z 2 Z3 := Z2 \ ZN where Z2 is as in Lemma 2.3 and ZN as above. Weshall show that N(z; t)t � M(z; t)t ! 016



weakly. It suÆ
es (see Theorem 7.1 in [Bi℄) to show that for any C1 fun
tion f : T1M ! R,��R f dN(z; t)t � R f dM(z; t)t ��! 0: (3:2)Formula (3.2) is proved by working in the 
overing spa
e H . Let f also denote the liftof f to T1 ~M ! R and �x a lift ~z, and t > 0 large enough to satisfy 
onditions given below.Let 
(t) = p( ~�t(~z)), � = �~z, and � be a parameterization of [
(0); 
(t)℄ by ar
length.Let A, B and D be the 
o
y
les de�ned in x2 and drop the dependen
e of 
o
y
les, et
.on z and t. With this 
onvention, � : [0;D℄ ! H with �(0) = 
(0), �(D) = 
(t), andk _�kh � 1. Also, let � be a parameterization of [�(
(0)); �(
(t))℄ � � by ar
length, andso � : [0; A℄ ! U has �(0) = �(
(0)), �(A) = �(
(t)), and k _�kh � 1. Let s and u be theparameters of � and � respe
tively. De�ne the length of the geodesi
 segment [�(
(0)); 
(t)℄to be L(t) and let Æ : [0; L℄ ! [�(
(0)); 
(t)℄ be parameterization by ar
length.Sin
e � is positive progress, Lemma 2.3 yields A�(�) = D�(�) > 0 and B�(�) = 0.Thus for all suÆ
iently large t, A(t); L(t) > B(t), and L(t);D(t) > d(
(0); �(
(0)) := B0,and A(t); L(t);D(t) > 1 also. Thus expressing the left hand side of (3.2) in 
oordinates inthe 
over1t �����Z A0 f(�(s)) ds � Z D0 f(�(u)) du������ 1t �����Z A0 f(�(s)) � Z L0 f(Æ(v)) dv�����+ 1t �����Z L0 f(Æ(v)) dv � Z D0 f(�(u)) du������ 1t m(5(B +B0) + 2)Where the last inequality uses Lemma 1.1. The 
onstant m as de�ned in that lemma is�nite be
ause f is the lift of a C1-fun
tion on the 
ompa
t manifold T1M . Thus sin
eB = o(t), (3.2) follows. tuProposition 3.1 immediately yields the main existen
e theorem for the rotation mea-sure.Theorem 3.2: If �t is a C1-
ow on B and � is an ergodi
, �t-invariant probabilitymeasure with 
ompa
t support and D�(�) > 0, then the rotation measure �(z) exists almosteverywhere and has a 
onstant value denoted �(�).Se
tion 4: Properties of the rotation measure.x4.1 Semi
onjuga
y and the rotation measure. The rotation measure �(�) 
anbe given additional dynami
al meaning by 
onne
ting its behavior as an invariant measureof the hyperboli
 geodesi
 
ow with the dynami
s of the �t-invariant measure �. This
onne
tion is provided by a measure theoreti
 semi-
onjuga
y indu
ed by the proje
tion �from a generi
 orbit to its shadowing geodesi
. Although � takes �t-orbits to gt-orbits, itis perhaps not lo
ally inje
tive on orbits; it thus does not give a semi
onjuga
y. Informally,the diÆ
ulty is that �t-orbits are only asymptoti
ally in the same dire
tion as the shad-owing geodesi
; they 
ertainly 
an travel forward and ba
kwards in the dire
tion of the17



geodesi
 . In more pre
ise language, the 
o
y
le A(z; t) whi
h measures the signed lengthof the proje
tion of the orbit onto the shadowing geodesi
 
an 
ertainly be negative forsome t. However, A�(�) = D�(�) > 0 for positive progress measures � by Lemma 2.3, andso Lemma 1.4 provides a monotone 
o
y
le that \straightens out" � into a semi
onjuga
y.Two measures are said to be equivalent if they are mutually absolutely 
ontinuous;this is denoted �1 � �2. If � is an invariant measure for the 
ow �t, the h�(�t) denotes itsmetri
 entropy.Theorem 4.1: Let �t be a C1-
ow on B, � an ergodi
, �t-invariant probabilitymeasure with 
ompa
t support and D�(�) > 0. The geodesi
 
ow gt on T1M is indu
ed bya hyperboli
 metri
 and the proje
tion � : Z3 ! T1M is de�ned in x2.3 with Z3 the fullmeasure set de�ned in Proposition 3.1. If � is the measure �(�)=D�(�) de�ned on T1Mthen(a) (B; �t; �) is semi-
onjugate to (T1M;gt; �),(b) � is the unique, ergodi
, gt-invariant probability measure equivalent to ��(�),(
) h�(�t) � h�(gt)=D�(�).Proof: A semi
onjuga
y result is proved �rst. Re
all the Lips
hitz 
o
y
le A de�nedabove Lemma 2.3. Lemma 2.3 says that A�(�) = D�(�), and the latter is positive byhypothesis. Thus by Lemma 1.4 there is an invertible Lips
hitz 
o
y
le Â with A�(�) =Â�(�) with Â de�ned almost everywhere byÂ(z; t) = A(z; t) + �(�t(z)) � �(z)for a measurable, real valued � that is 
ontinuous on orbits.De�ne �̂ : Z3 ! T1M as �̂(z) = g�(z)(�(z)) = �(z) + �(z) where in the last formulawe add on an oriented geodesi
 using a parameterization by ar
 length. The de�nition ofA yields that � Æ �t(z) = gA(z;t) Æ �(z), and so �̂ Æ �t(z) = gÂ(z;t) Æ �̂(z), for all z and tSin
e Â is monotone, as des
ribed in x1.5, it may be used to de�ne a time-
hanged 
ow�̂s with �̂�̂s(z) = gs�̂(z), for all z; s. There is a unique ergodi
 �̂s-invariant probabilitymeasure �̂ that is equivalent to �. Thus �̂�(�̂) is a gt-invariant, Borel probability measurethat is ergodi
 sin
e �̂ is. Now de�ne �̂ = �̂�(�̂), and note that (a) has been proven with �̂in pla
e of �. To prove (b) with the same repla
ement we must show that �̂�(�̂) � ��(�)(uniqueness follows from ergodi
ity).Sin
e � is �t-invariant, a set V has �(V ) = 0 if and only if its saturation R � V :=f�t(x) : t 2 R; x 2 V g has measure zero. Now for every z, �(z) and �̂(z) lie on the same �ttraje
tory, and thusR���1(U) = R��̂�1(U) for any Borel U � T1(M). Thus �̂�(�) � ��(�).But � � �̂ sin
e they 
orrespond under a time 
hange, thus �̂ = �̂�(�̂) � �̂�(�) � ��(�).To 
omplete the proof of (a) and (b) we must show that �̂ = �(�)=D�(�). It isstandard that sin
e �̂ is ergodi
 for gt, there is a full �̂-measure set X � T1M so that x 2 Ximplies that the unit mass measures distributed uniformly with respe
t to time on the orbitsegments g[0;s℄(x) 
onverge weakly to �̂ as s!1. Thus sin
e �̂ = �̂(�̂), the full �̂-measureset �̂�1(X) is su
h that z 2 �̂�1(X) implies that �̂(z) = x has this property. Thus for su
ha z, if Q(z; s) is the measure on the geodesi
 segment [�̂(z); �̂(�̂s(z))℄ = [�̂(z); gs(�̂(z))℄that is uniformly distributed with respe
t to ar
 length, thenQ(z; s)s ! �̂18



weakly.Now let z 2 �̂�1(X) \ Z3. By 
onstru
tion, Q(z; s(z; t)) �N(z; t), with N as in x3,has total mass between 0 and �(�t(z)) � �(z). Lemma 1.4 says that Â�(�) = A�(�) andso (1.8) implies that �(�t(z))=t! 0 as t!1. Thus weakly,Q(z; s(z; t))t ! N�(z) = �(�)using Proposition 3.1. But alsos(z; t)t = Â(z; t)t ! Â�(�) = A�(�) = D�(�)by Lemmas 1.4 and 2.3. Thuslimt!1 Q(z; s(z; t))t = limt!1 s(z; t)t Q(z; s(z; t))s(z; t) = D�(�) �̂;proving that �̂ = �(�)=D�(�). The entropy statement in (
) follows from the formula forentropy 
hange of a 
ow under a time 
hange. tuRemark 4.1: If X is a 
ompa
t invariant set 
onsisting of quasigeodesi
s with thesame 
onstants, then an alteration of the proof of Theorem 4.1 yields a 
ontinuous semi-
onjuga
y onto a 
ompa
t invariant subset of the geodesi
 
ow. This 
onstru
tion is donein [BG℄ for the 
ase of Euler-Lagrange systems whose 
on�guration spa
e is a hyperboli
manifold (eg. the geodesi
 
ows of a Riemannian metri
).x4.2 The rotation measure as a fun
tion. To view the rotation measure � asa fun
tion its domain and 
odomain must be spe
i�ed. If for a 
ontinuous 
ow �t on ametri
 spa
e X, E(�t;X) denotes the spa
e of ergodi
, �t-invariant probability measureswith 
ompa
t support, then the domain of � 
onsists of the positive progress measures inE(�t;B). Theorem 4.1 says that the 
odomain of � 
onsists of the ergodi
 measures of thegeodesi
 
ow. It is usually more 
onvenient to work with probability measures, so �(�) is
onsidered a pair 
onsisting of \dire
tion" and \magnitude" with the dire
tion given byan invariant probability measure of the geodesi
 
ow. A

ordingly (with an alteration ofnotation to avoid 
onfusion) let�̂(�) = ( �(�)D�(�) ;D�(�)) 2 E(gt; T1M) �R:To in
lude the 
ase of zero progress measures, de�ne �̂(�) = 0 if D�(�) = 0. Thus ifÊ(gt; T1M) := (E(gt; T1M) �R)[ f0g;then �̂ : E(�t;B) ! Ê(gt; T1M).The map �̂ 
an be extended to the set of all �t-invariant measures using the ergodi
de
omposition. This must be approa
hed with 
aution if one of the measures in the19



de
omposition of the measure m has zero progress. In this 
ase it is no longer guaranteedthat the generi
 point for the measure m has a shadowing geodesi
 despite the fa
t thatthe extended fun
tion �̂(m) has nonzero value.Also note that the rotation measure is not invariant under topologi
al 
onjuga
y of the
ow. This is be
ause the average speed 
an be di�erent for a pair of measures 
orrespondingunder the 
onjuga
y. However, the �rst 
omponent of the image of �̂ is 
onjuga
y invariant,and the ne
essary adjustment to the se
ond 
omponent is easily 
omputed using the time
hange 
o
y
le.x4.3 The homology rotation ve
tor. In this se
tion we show that the rotationmeasure is a generalization of the homology rotation ve
tor in the sense of (4.1) below.The homology rotation ve
tor goes ba
k to S
hwartzman ([S
℄) who 
alled it an asymptoti

y
le, be
ause it gives a dynami
al meaning to elements of real homology with \irrationalslope". He de�ned the rotation ve
tor for individual points, and pointed out that Birkho�'sErgodi
 Theorem implies that the generi
 points for an ergodi
 measure all have the samerotation ve
tor. This allows the assignment of a real homology 
lass to an ergodi
 invariantmeasure. If one 
onsiders the 
ow and invariant measure as an oriented lamination with atransverse measure, then this homology 
lass 
orresponds to the geometri
 
urrent of themeasured lamination ([RS℄).We re
all the de�nition of the homology rotation ve
tor in the 
ontext used here. Pi
ka de Rham basis for H1(M ;R) ' R�, where � is the �rst Betti number of M , and let the
losed one-forms �1; �2; : : : ; �� represent the basis elements. Given z 2 B and t 2 R,de�ne S : B �R! R� 
omponent-wise as(S(x; t))i = Zp(�[0;t℄(z)) �i:The de�nition depends on the 
hoi
e of basis for H1(M ;R), but not on the one-formsrepresenting the 
hosen basis. It is 
lear that S is a ve
tor-spa
e-valued, additive 
o
y
le.If S�(z) 2 H1(M ;R) ' R� exists it is 
alled the homology rotation ve
tor of z under the
ow �t. Roughly speaking, the dire
tion of the ve
tor S�(z) is the dire
tion of the motionof the orbit around the manifold as given in homology, and the magnitude of the 
lass isthe speed of the orbit (or more properly, the rate of progress in the universal free Abelian
over, 
f. Remark 2.1 about `� vs. D�). If � is an ergodi
 invariant measure with 
ompa
tsupport, then by Theorem 1.2, S� exists almost everywhere and has 
onstant value denotedS�(�). Thus as a fun
tion, S� : E(�t;B) ! R�.If � is a ergodi
 gt-invariant probability measure on T1M , we may make the analogousde�nition of a homology rotation ve
tor under the geodesi
 
ow. To prevent 
onfusion theR�-valued 
o
y
le in this 
ase is 
alled T instead of S, thus T � : E(gt; T1M) ! R�. Thismaybe extended in the natural way to a fun
tion de�ned on the range of �̂ asT̂ : Ê(gt; T1M) ! R� de�ned by T̂ (�; r) = rT �(�) and T (0) = 0.The pre
ise manner in whi
h the rotation measure extends the homology rotationve
tor is expressed by T̂ Æ �̂ = S�: (4:1)20



To prove this note that the 
losed one-forms �i may be treated as maps T�M ! R thatare linear on �bers. These maps restri
t to 
ontinuous fun
tions on T1M . Thus for� 2 E(gt; T1M) the Birkho� ergodi
 theorem yields that(T �(�))i = Z �i d�: (4:2)Sin
e the one-forms are 
losed, the integral of �i over the 
urve segment p(�[0;t℄(z))is the same as the integral of �i over the geodesi
 segment that is homotopi
 to this
urve segment rel endpoints. Re
all that the measure M(z; t) de�ned in x3 is uniformlydistributed with respe
t to ar
 length on this 
urve segment segment. Thus if z is generi
for S and M and interpreting the one-forms as �i : T1M ! R in the se
ond integral,(S�(�))i = limt!1 1t Zp(�[0;t℄(z)) �i = limt!1Z �i dM(z; t)t = Z �i d�(�) (4:3)using Proposition 3.1.For � 2 E(�t;B), the de�nition of �̂ and (4.2) yields(T̂ (�̂(�))i = (D�(�) T �(�(�))D�(�) )i = Z �i d�(�):By (4.3) this is (S�(�))i, proving (4.1).Se
tion 5: Examples and Appli
ations.This se
tion gives an example that illustrates various results and de�nitions of theprevious se
tions. The justi�
ations of many statements are left for the reader, and knowl-edge of basi
 de�nitions and 
onstru
tions from dynami
al systems theory is assumed. Foran introdu
tion to this material see [HK℄, [Fk℄ or [Ro℄. The analysis of the example makesuse of various results about Cayley graphs of the fundamental groups of hyperboli
 surfa
esembedded as equivariant trees in P2, random walks on these trees, subshifts of �nite type,and the symboli
 
oding of geodesi
s. Most of this material is surveyed in [BKS℄ (see also[S℄). For an introdu
tion to random walks on trees see [PL℄ or [Wo℄. Basi
 results aboutsymboli
 dynami
s are well 
overed in [Kt℄.The main example is a di�eomorphism � of T , the two-dimensional torus minus anopen disk. Note that T is a hyperboli
 manifold. It is not 
losed but it 
an be embeddedin a 
losed genus two surfa
e, and � extended as the identity outside the embedded 
opyof T . We fo
us mainly on the dynami
s of � on T , bringing the ambient surfa
e intoplay only when ne
essary. The relevant dynami
s of � lie in a 
ompa
t, invariant, tran-sitive hyperboli
 set 
. The Markov partition for 
 has re
tangles that are labeled withgenerators of �1(T ) (as in [W℄) whi
h des
ribe the motion of the box under one iterate.Thus the symboli
 des
ription of an orbit des
ribes the motion of the orbit around T , orequivalently, in the universal 
over ~T .The symboli
 des
ription 
an also be used to generate a walk on the Cayley graph of�1(T ) ' F (a; b), the free group on two generators. When this graph is embedded as anequivariant spine T of ~T , the intrinsi
 geometry of the graph is 
losely related to the21



Figure 1: (counterclockwise from the upper left): (a) One lift of (b). (b) The image of the rectangle S under the map    . (c) The projection of (d). 
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ambient hyperboli
 geometry, and walks on the graph shadow the lifted orbit of � withthe same symboli
 
oding. Thus the relationship of the dynami
s of � on 
 to the am-bient hyperboli
 geometry 
an be analyzed using the symboli
 des
ription. In parti
ular,symboli
 analogs of the various geometri
 fun
tions and 
o
y
les of the previous se
tions
an be de�ned and 
omputed within the symboli
 framework.Although this se
tion fo
uses on a single example, a similar (but more 
ompli
ated)analysis 
an be given for a mu
h wider 
lass of maps, for example, for Axiom A di�eomor-phisms isotopi
 to the identity on a hyperboli
 manifold.x5.1 The di�eomorphism and its Markov partition. The 
onstru
tion is aversion of the standard one for Axiom A di�eomorphisms. Let S be a square embedded inthe interior of T . The di�eomorphism � : T ! T is isotopi
 to the identity and stret
hes Sand lays it over itself in a 
olle
tion of linear strips. We fo
us attention on �ve of these withea
h 
onsisting of points that have traversed T along the same element of the fundamentalgroup, these elements being the generators a and b, their inverses �a and �b, and the identityelement e. Figure 5.1(a) shows the image of S in T . Figure 5.1(b) shows the image of onelift of S under the lift of � to the universal 
over.The invariant set of interest is de�ned by
 = \n2Z �n(S):Note that 
 is an invariant Cantor set but it is not isolated in the nonwandering set,and so it is not a basi
 set. However its dynami
s 
an be des
ribed symboli
ally asfollows. Fix a hyperboli
 metri
 on T with geodesi
 boundary su
h that the geodesi
s inthe free homotopy 
lasses of a and b both have length one. Let ~T � P2 be a geometri
universal 
over of T , i.e. ~T modulo 
overing transformations is isometri
 to T with the
hosen hyperboli
 metri
. The 
overing transformation that 
orresponds to an elementw 2 �1(T ) is denoted �w. Thus the de
k group is generated by a pair of isometries of P2,�a and �b. Note that elements in �1(T ) are written left to right, while 
omposition of de
ktransformations are written in the other order. Thus, for example, �ab = �b Æ �a. Treatingthis representation of �1(T ) as a Fu
hsian group leads to the name limit set for the portionof the topologi
al frontier of ~T that lies in S1.Fix a fundamental domain in ~T and an inje
tive lift of S 
ontained in that fundamentaldomain. Denote this distinguished upstairs 
opy of S as Se. The other lifted 
opies ofS are labeled by the de
k transformation that takes Se to them, so for ea
h w 2 �1(T ),Sw := �w(S) (see Figure 5.1b). The lifted 
opy of 
 
ontained in Sw is denoted 
w. Let ~�be the lift of � that extends to the identity on the limit set in S1. The Markov re
tanglesare �rst de�ned in the 
over by 
hoosing s 2 fa; �a; b;�b; eg and letting ~Rs denote the set ofpoints in Se that are mapped into Ss. Thus ~Rs = ~��1(Ss) \ Se. The Markov re
tanglesRs � S are the proje
tions of the ~Rs.With this Markov partition the symboli
 model of � restri
ted to 
 is the 
olle
tion �of all two-sided sequen
es with elements taken from the set fa; �a; b;�b; eg, � = fa; �a; b;�b; egZ :De�ne � : 
 ! � as the itinerary map with respe
t to the partition, i.e. s is the ithsymbol in the sequen
e �(x) exa
tly when �i(x) is in the subre
tangle Rs. The map � is ahomeomorphism that 
onjugates � restri
ted to 
 to the shift map Æ on �; Æ Æ � = � Æ�j
.23



(The shift on a symbol spa
e is denoted Æ here rather than the usual � to avoid 
onfusionwith the proje
tion � de�ned in x2.3.)The labeling of the Markov re
tangles was 
hosen so that the symboli
 des
ription ofan orbit would des
ribe the motion of its lift in the 
over. The �rst i-steps of this motionare des
ribed by the �rst i-letters in the symbol sequen
e, whi
h is 
onsidered as an wordin �1(T ). A

ordingly, for a sequen
e s 2 �, and a non-zero integer i, w(s; i) 2 �1(F ) isde�ned by w(s; i) = s0s1 : : : si�1 if i > 0w(s; i) = �s�1�s�2 : : : �si if i < 0where an overbar denotes the inverse, and let w(s; 0) = e. If x 2 
 is 
oded by the sequen
es = �(x) and ~x 2 �e is its lift, then ~�i(~x) 2 Sw(s;i), for all i.This des
ription makes it 
lear that ea
h lifted orbit from 
 is behaving like a dis
retewalk in whi
h ea
h step 
onsists of a jump into one of the four adja
ent fundamentaldomains, or else a pause step in whi
h the orbit stays in the same 
opy of S. Other typesof walks 
orrespond to various invariant subsets of 
. Using the 
onjuga
y � these subsets
an be de�ned in the symbol spa
e �. The standard walks without pauses 
orrespond tosequen
es whi
h do not 
ontain the symbol e. The 
olle
tion of these is �0 := fa; �a; b;�bgZ ��, and the 
orresponding subset of 
 is 
0 = ��1(�0). Walks without ba
ktra
king, also
alled self-avoiding walks, 
orrespond to sequen
es from �0 where the transitions a ! �a,�a ! a, b ! �b, and �b ! b are not allowed. The 
olle
tion of these sequen
es is denoted �̂and is a subshift of �nite type with transition matrix0B�1 0 1 10 1 1 11 1 1 01 1 0 11CA :Let 
̂ = ��1(�̂). Note that the allowable �nite blo
ks of symbols for �̂ are the same asthe redu
ed words in F (a; b).x5.2 The equivariant tree, walks and symboli
 
oding. This subse
tion for-malizes the 
onne
tion between the dynami
s of ~�, walks, and symboli
 
oding using atree T � ~T de�ned as follows. Let p be the �xed point of � that is 
oded by e1. Adjustthe position of S and p so that p lies at the interse
tion of the two 
losed geodesi
s in Tthat represent the free homotopy 
lasses of the two generators a and b, respe
tively. Thetree T is de�ned as the total lift of this pair of 
losed geodesi
s. It is an in�nite simpli
ialtree with four edges 
oming into ea
h vertex. For ea
h w 2 F (a; b) the vertex 
ontainedin Sw is denoted vw. The edges of T 
onne
t just those verti
es in adja
ent fundamentaldomains and are geodesi
 segments with length one. The tree T 
an also be identi�ed withthe Cayley graph of �1(M) ' F (a; b) (see Figure 5.2b).If we de�ne the distan
e dT (vw1 ; vw2) between verti
es in T as the hyperboli
 lengthof the unique topologi
al ar
 embedded in T that 
onne
ts vw1 and vw2 , then this distan
eis the same as the distan
e between the two elements w1 and w2 in the word metri
 onF (a; b), namely the length of the redu
ed word �w1w2. In symbols, dT (vw1 ; vw2) = `( �w1w2),where for w 2 F (a; b), `(w) denotes the redu
ed length of w, i.e. the number of generators24



in the shortest word representing w. A 
lassi
 result of Milnor [Mi℄ says that this distan
ein T is equivalent to the hyperboli
 distan
e in ~T in the sense that,
1dT (vw1 ; vw2) � d(vw1 ; vw2) � 
2dT (vw1 ; vw2) (5:1)for some positive 
onstants 
1 and 
2.To 
onne
t walks on T to the dynami
s of � we shall need to 
onsider two-sided(i.e. indexed by Z) walks be
ause � is invertible. It is also 
onvenient to just 
onsiderstandard walks without pauses; these 
orrespond to sequen
es from �0. The fo
us inthis subse
tion is on individual walks; measures on the 
olle
tion of walks will be 
onsid-ered in the last subse
tion. A walk on T is an bi-in�nite sequen
e of adja
ent verti
es: : : ; vw�2 ; vw�1 ; vw0 ; vw1 ; vw2 ; : : :. The vertex vw0 (or sometimes w0) is 
alled the root ofthe walk. The dire
tion of ea
h step is given by �wiwi+1 whi
h is an element of the setfa; �a; b;�bg. Thus the walk is alternatively spe
i�ed by the root w0 and the sequen
e s 2 �0with si = �wiwi+1. If a walk with root w0 and the point ~x 2 Sw0 have the same symboli
des
ription from �0, then at ea
h step (iterate of ~�) they are at most the diameter of Sapart. In dynami
al language, this says that the walk with root w0 des
ribed by the sym-bol sequen
e s is a pseudo-orbit for ~� whi
h is shadowed by the orbit of the lift ~x 2 Sw0of the point x 2 
 with �(x) = s.The next step is to identify the symboli
 analog of the geodesi
 
ow using walks onT . A walk with sequen
e t 2 �̂ is 
alled a geodesi
 walk be
ause it has no ba
ktra
kingand always 
onverges to an � and ! limit points in S1. Sin
e a geodesi
 walk is 
learly
ontained in a quasigeodesi
 (see Remark 2.4), the walk is a uniformly bounded distan
eaway from the unique hyperboli
 geodesi
 in P2 whi
h has the same limit points on S1.Further, this bound is the same for all geodesi
 walks. A point on a symboli
 geodesi
 isspe
i�ed by the root of a geodesi
 walk. Moving the root to an adja
ent vertex on the walkrequires a shift of the spe
ifying sequen
e t. Thus the dis
rete dynami
al system (�̂; Æ)is the symboli
 analog of the geodesi
 
ow on T . Note that elements of �̂ 
orrespond topoints on geodesi
s, the geodesi
 itself is represented by the orbits of points. In algebrai
language, a bi-in�nite word using the symbols a; �a; b;�b uniquely spe
i�es a geodesi
 in T ,but the spe
i�
ation of a point on this geodesi
 requires an expli
it numbering of elements,i.e. the insertion of a \de
imal point".A topologi
al 
onjuga
y between the geodesi
 
ow and the suspension 
ow of (�̂; Æ)makes the 
orresponden
e more pre
ise. Sin
e T has boundary, the meaning of \geodesi

ow" must be 
lari�ed. Consider T as embedded in a 
losed genus two surfa
e M with ahyperboli
 metri
 that restri
ts to the 
hosen one on T . Let X 
onsist of all the geodesi
s ofM that are wholly 
ontained in T in
luding the boundary geodesi
 with both orientations.Then X as a subset of T1M is 
ompa
t and invariant under the geodesi
 
ow gt.The de�nition of the 
onjuga
y requires a more 
areful 
hoi
e of fundamental domainfor ~T . Let Te be a fundamental domain whose boundary 
onsists of four pie
es whi
hare lifts of pie
es of the boundary of T and four pie
es (
alled edges) that are lifts ofthe geodesi
 ar
s labeled a0 and b0 in Figure 5.2a, and let Tw = �w(Te). This 
hoi
e offundamental domain ensures that for any � 2 ~X and w 2 �1(T ), � \ Tw is either emptyor else a single 
losed interval joining distin
t edges of Tw.Given a 
opy Tw of the fundamental domain and a geodesi
 � 2 ~X that interse
ts itnontrivially, there is a unique geodesi
 walk rooted at w that the geodesi
 shadows. If this25



walk has sequen
e t and p is the point in T1M that 
orresponds to the point where � entersTw, let h(p) = t. Note that the de�nition of h(p) is una�e
ted by moving � by a de
ktransformation. To extend h to the required homeomorphism, send the open ar
 in T1Mthat 
orresponds to � \ Int(Sw) to the open ar
 in the suspension of (�̂; Æ) that 
onne
tst to �(t). The resulting h is a homeomorphism that sends orbits of (X; gt) to orbits of thesuspension of (�̂; Æ), but does not preserve the time parameterization. However equation(5.1) shows that the time 
hange 
o
y
le (as in x1.5) is Lips
hitz.A more dynami
al interpretation of the 
onjuga
y 
an be given by using the ar
slabeled a0 and b0 in Figure 5.2a to 
onstru
t a 
ross se
tion to the 
ow (X; gt). The returnmap to the 
ross se
tion will be topologi
ally 
onjugate to the subshift (�̂; Æ). Thus (X; gt)may be viewed as a variable time suspension of (or spe
ial 
ow over) (�̂; Æ).x5.3 Co
y
les on the symbol spa
es. Sin
e the dynami
s of � restri
ted to 
0 are
ompletely des
ribed by the symboli
 system (�0; Æ) it is possible to translate the various
o
y
les of Se
tion 2 into 
o
y
les de�ned on (�0; Æ). The symboli
 analog of the proje
tion� onto a shadowing geodesi
 (when it exists) is a map with image �̂, the symboli
 analogof the geodesi
 
ow. In ea
h 
ase the symboli
 analog of a fun
tion is indi
ated by thesubs
ript s. The material of the last subse
tion implies that the symboli
 analogs shareall the relevant properties of their 
ontinuous 
ounterparts.The symboli
 analog of the distan
e 
o
y
le is the simplest to de�ne. Let Ds : ��Z!Zbe given by Ds(s; n) = `(w(s; n)) (
f. [De℄). The geometri
 interpretation of Ds(s; n)is the distan
e in T from the root to the position after n steps of a walk des
ribed bys. It is 
lear that Ds is a subadditive 
o
y
le for the shift Æ on �0 and that D�s(s) :=limn!1Ds(s; n)=n 
an be viewed as the asymptoti
 amount of 
an
ellation of the in�niteword s0s1s2 : : :.To de�ne �s, �x a sequen
e s 2 �0 and assume that ~x 2 
e with sequen
e s has ashadowing geodesi
, or equivalently, that the walk with sequen
e s and root e has � and! limits in S1, and these points are distin
t. The image of the \lift" of �s should be thegeodesi
 walk rooted at vw whi
h has these same limits on S1, where vw is the vertexon the shadowing geodesi
 that is 
losest to ve. If this walk has sequen
e t 2 �̂, then�s(s) = t. The distan
e of ~x from its shadowing geodesi
 is measured by the length of w,so de�ne �s(s) = dT (ve; vw) = `(w). The 
o
y
le that measures the distan
e of the orbitof a point from its shadowing geodesi
 is thus Bs(s; n) = �s(Æn(s)) ��s(s).Algebrai
ally, the map �s 
an be de�ned by 
an
ellation. Think of s 2 �0 as a bi-in�nite word written l:r with l and r left and right in�nite words, respe
tively. Redu
el starting from the de
imal point and going left, and r by going right. The resulting bi-in�nite word l0:r0 may have 
an
ellations a
ross the de
imal point, but it may be writtenas l00 �w:wr00 with w and l00:r00 redu
ed. If l00:r00 is not �nite in either dire
tion, then itrepresents a point on the shadowing geodesi
 and in fa
t l00:r00 = t = �s(s) with t as in theprevious paragraph. The word w is also as in the previous paragraph, and so �s(s) = `(w).x5.4 Computing the rotation measure and properties of �. The di�eomor-phism � restri
ted to the set 
0 is topologi
ally 
onjugate to subshift �0. This subshift hasun
ountably many di�erent ergodi
 invariant measures, but perhaps the most importantis the Parry measure whi
h maximizes the metri
 entropy, and in so doing makes it equal tothe topologi
al entropy. Sin
e �0 is a full shift on 4 symbols, the Parry measure, denoted26



�0, is the produ
t measure. More spe
i�
ally, if b is a �nite allowable blo
k of symbols andCb;j is the 
ylinder set of the blo
k beginning at the jth pla
e, then �0(Cb;j) = 1=4n, wheren is the number of symbols in the blo
k. The measure �0 restri
ted to one-sided sequen
esin �0 is also the stationary measure for the standard random walk on the Cayley graph ofF (a; b). In the language of x5.2, this random walk 
onsists of all one-sided walks rooted atve using one-sided sequen
es from �0. Furstenberg showed that the typi
al su
h randomwalk has progressed a distan
e of (1=2)n + o(n) after n steps (Se
tion 4.2 of [Fu1℄, 
f.exer
ise 9.1 in [PL℄). Thus the asymptoti
 value of the distan
e 
o
y
le for Parry measureis D�(�0) = 1=2.The existen
e almost surely of limit points on S1 then follows from Lemma 2.1. Theequivalent statement for the random walks is 
ontained in Theorem 1.3 of [Fu2℄. Fromthis (or Lemma 2.2) the existen
e of the shadowing geodesi
 almost surely follows. Viewedalgebrai
ally this says that the typi
al bi-in�nite word in the generators a; b; �a;�b redu
es toa bi-in�nite word. It also says that the symboli
 version of �s is de�ned almost everywherewith respe
t to �0.The 
omputation of the rotation measure of �0 will follow from the 
omputation of(�s)�(�0). Given a pair of �nite allowable blo
ks b1; b2 for �̂, �x a pair of embedded ar
s I1and I2 in T that represent segments of walks with these blo
ks. If b1 and b2 have the samenumber of symbols, then there is an isometry of T that takes I1 to I2. In general, thisisometry will in
lude 
overing transformations as well as maps su
h as the inter
hange ofa pair of subtrees rooted at the same vertex. Be
ause the measure �0 is symmetri
 in thesymbols, the isometry indu
es a map from ��1s (Cb1;i) to ��1s (Cb2;j) for any i and j thatpreserves the �0 measure. Thus all 
ylinder sets in �̂ 
oming from blo
ks of the same lengthhave the same (�s)�(�0) measure. There are 4 � 3n di�erent allowable blo
ks of length n in�̂, thus (�s)�(�0)(Cb;i) = 1=(4 � 3n). This is the same as the mass of the 
ylinder sets forthe Parry measure �̂ on �̂, and so (�s)�(�0) = �̂.To 
ompute the rotation measure of �0, the measure �̂ is 
onne
ted with an invariantmeasure of the geodesi
 
ow via the 
onjuga
y h des
ribed in x5.2. Let � be the unique,ergodi
, gt-invariant measure on X that is equivalent to h�(�̂). The geodesi
 
ow restri
tedto X with the measure � 
an be thought of as the geodesi
 
ow on T with Liouville measure.Using D�(�0) = 1=2 and Theorem 4.1, �(�0) = (1=2)�. Viewing (X̂; gt) as the variable timesuspension of (�̂; Æ) as in x5.2, the measure � is the suspension of the Parry measure �̂on �̂. The proje
tion �s indu
es an almost everywhere de�ned map of the suspension of(�0; Æ) onto that of (�̂; Æ). This sends Parry measure to Parry measure, but the typi
alimage orbit is moving half as fast as its preimage.To 
ompute the homology rotation of ve
tor of �0 (see x4.3), use the Abelianization ofa and b as a basis for H1(T;Z). Sin
e all the 
ylinder sets of length one in �0 have equalmass, S(x; 1) takes the four values (1; 0); (�1; 0); (0; 1); (0;�1) on sets of equal measure.Thus R S(x; 1) d�0 = 0, and so using Theorem 1.2, the homology rotation ve
tor S�(�0) = 0.This 
orresponds to the well known fa
t that the standard walk on the Cayley graph ofZ2 has mean progress zero. It also des
ribes the statisti
s of the dynami
s of � lifted tothe Z2-
over T 
reated by removing an equivariant family of open disks from the universal
over of the torus. In this 
over, the orbits of � make no mean progress almost surely withrespe
t to �0. 27



The behavior of � lifted to the universal 
over manifests the frequently o

urringdi
hotomy between what is dynami
ally typi
al in terms of topology and measure. By
on
atenating symbols in �0 it is not diÆ
ult to 
onstru
t a sequen
e su
h that the 
orre-sponding orbit under ~� beginning in 
e is dense in ~
0, the full lift of 
0. Sin
e ~
0 is a Bairespa
e, a standard argument shows that a dense GÆ-set of points from ~
0 also have thisproperty. Thus in 
0 a dense-GÆ set of points have lifts whose orbits pass through everyfundamental domain in the 
over, and thus 
ertainly do not have shadowing geodesi
s.This is in 
ontrast to the full �0-measure set of points whi
h do. Consequentially, theproje
tion map � is de�ned almost everywhere, but is not de�ned on a dense GÆ-set in 
0.It also is the 
ase that � is dis
ontinuous at every point where it is de�ned in 
0. Tosee this using �s, 
hoose s 2 �0 so that �s(s) = t 2 �̂ exists. Let l and r be left in�niteand right in�nite redu
ed words, respe
tively, whi
h begin with symbols di�erent thant�1 and t0, and are su
h that the 
on
atenated sequen
e lr is also redu
ed. For n 2 N,let b(n) = s�n; s�n+1; : : : ; s�1; s0; s1; : : : ; sn and s(n) = lb(n):�b(n)r, where as usual anoverbar means the inverse but now applied to sequen
e blo
ks in the obvious fashion. Thens(n) ! s, but �s(s(n)) = l:r whi
h is the same positive distan
e from �s(s) for all n.One may also use the symboli
 models to show that for an �0-typi
al orbit, the distan
efrom the shadowing geodesi
 is not bounded. This distan
e is o(n) be
ause Lemma 2.3yields B�(s) = 0 almost surely. For ea
h m 2 N, let b(m) = am�am, and so �0(Cb(m);0) =1=42m. Sin
e �0 is ergodi
 under the shift, the generi
 point lands inCb(m);0 about every 42miterates. This ensures that for a generi
 point for the measure, there is always ba
ktra
kingof all lengths that 
onstantly happens along the walk 
orresponding to the orbit. Ex
eptin the spe
ial 
ase that �s(s) 
ontains long blo
ks of a0s or �a0s, this means that the walkis wandering arbitrarily far away from its shadowing geodesi
. More pre
isely, for anym 2 N, Bs(s; n) = m for in�nitely many n 2 N. By 
hanging the de�nition of b(m) asneeded, this 
an be made to happen for generi
 s. An interesting question is a CentralLimit Theorem for Bs: does Bs(s; n)=pn 
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