$U = \mathbb{R}^2 - \text{closed disk.}$

$U \cap \mathbb{R} = \mathbb{R}^2$

$\mathbb{R}_+ \times \mathbb{R} = \mathbb{R}^2$

T is a torus.
\[(\hat{h})^* c = \phi b_q^{1-1} \]
\[\exists \epsilon = \varepsilon \]
\[\text{If } a_6 a_9 \Rightarrow a_b = 6 \text{ then } \ln(a_{6,9}) = \ln(a_{6,9}) = 2 \]

\[\text{(1.4.2)} = E \]

\[\text{(1.4.10)} = 6 \]

\[\text{(1.4.11)} = 6 \]

\[\text{A configuration loss.} \]

\[\text{Non-deg. vertex.} \]
$\Pi_1(\mathbb{R} \times \{0\}) = \langle a \rangle = \mathbb{Z}$

$\Pi_1(\mathbb{R} \times \{t\}) = \langle \epsilon \rangle$ (1)

$\Pi_1(\mathbb{R} \times \{t\}) = \epsilon$

$\langle b \rangle = \langle \epsilon \rangle$

Let \mathcal{X} be an arbitrary connected Hausdorff space.

Let Y be a Mobius band.

$U = \text{Disk} + \text{small normal}$

$\cup V$ and $\cup W$ small.}

N.V. is annulus

$\emptyset = \text{Disk} + \text{point}$

\mathbb{Z} and \mathbb{Q} small.
More Algebra

Let $\mathbb{Z}_6 < G$ be a subgroup of G.

A family of elements $G = \{x_1, x_2, \ldots, x_n\}$ of G can be expressed as a finite sum if each $x_i \neq 1$.

If G is an Abelian group, then G is isomorphic to the direct sum of its cyclic subgroups.

Let $G = \mathbb{Z}_6$, then write $G = \{0, 1, 2, 3, 4, 5\}$.

The sum of all elements in G is 0.

If G is a subgroup of G, then G is isomorphic to the direct sum of its cyclic subgroups.

If G is a subgroup of G, then G is isomorphic to the direct sum of its cyclic subgroups.
$\mathbb{R}^2 = \{ (...x_{-2}, x_{-1}, y_0, x_1, ...): x_0 \in \mathbb{R}^2 \}$

is a group via

$$(x+ y)_2 = x_2 + y_2.$$

Let $G_n = \{ (0, 0, x_n, 0, ...): x_n \in \mathbb{R}^2 \}$

$\mathbb{R}^\infty = \bigoplus_{n \in \mathbb{Z}} G_n \subseteq \mathbb{R}^2$

$\bigoplus_{n \in \mathbb{Z}} \mathbb{R}$
\((\cdot) \quad \subset \quad H \quad \xrightarrow{\sim} \quad G \)

For some Abelian group \(\mathcal{A} \),

\[\exists \; h : G \rightarrow \mathcal{A} \]

\[g \neq e \quad \iff \quad g \neq e \quad \text{for some homomorphism } \varphi : G \rightarrow \mathcal{A} \]

\[\exists \; \varphi \; \text{and} \quad \varphi(e) \neq 0 \cdot \varphi(e) \]

Lemma: Given group \(G \).
\[h : g \to \# = g \text{ is } \# \]

\[h^* : g \to h \text{ when } \not\exists^g \]

and define family given via

Pick an index \(\ell \) and \(H = g \)

\[x = 2 \times x = 2 \times y \text{ (initial guess}) \]

Since \(\mathcal{G} \subseteq \mathcal{F} \) is given \(x \) by assumption.

Proof: \(y \) is unique (conversely, assume \((x, y) \) holds.

\[\implies 6 = \Theta g \]

Conversely \(\mathcal{G} \subseteq \mathcal{F} \) and \((x, y) \) holds.
(1) \(x \times y = \exists z \forall x (x \times y = z \wedge z \subseteq x \times y) \)

\(f = \Theta G \wedge G \text{ is an } \mathbb{R} \text{-function} \)

Now consider an \(\mathbb{R} \text{-function} \) \(\text{f} \).

\(x = x \times y \forall x \in \mathbb{R} \text{-space} \).

\(\forall z \exists = (\forall z \exists x \times y \subseteq z \times (x \times y) \wedge z \subseteq (x \times y) \subseteq \mathbb{R} \text{-space}) \).

Extension guaranteed.

Since \((x) \forall y \in \mathbb{R} \neq 6 \in \mathbb{R} \).
(1) Since sum is finite, this is defined.

(2) Since expression for \(x \) is unique,

(3) If it is of curves, then homogenization

It is well defined.