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TOPOLOGY EXAM 2 • FALL 2021 • PROF. BOYLAND

1. Show that the Tietze Extension Theorem implies Urysohn’s Lemma.

2. Assume (X, d) is a metric space such that every ball Bε(x) has compact closure. Show the space
is complete.

3. Let Aλ be a collection of connected sets for λ ∈ Λ some index set. Assume that A is also
connected and A ∩ Aλ 6= ∅ for all λ. Show that A ∪ (∪λ∈ΛAλ) is connected.

4. Assume f : [0, 1] → [0, 1] is continuous. Show that there is a point x0 with f(x0) = x0. Is the
same true for a continuous f : [0, 1)→ [0, 1)? Be sure to justify your answer completely.

5. (a) Show that a closed subspace of a Lindelöf space in Lindelöf.

(b) Show by example that a closed subspace of a separable space need not be separable.

6. Suppose that (X, d) is a metric space and A and B are nonempty, disjoint, compact subsets.
Define

d(A,B) = inf{d(a, b) : a ∈ A and b ∈ B}.

Prove that there exist points c ∈ A and k ∈ B such that d(A,B) = d(c, k) > 0.

Don’t forget your signed statement


